Organic Formulas and Molecular Models

This is an example of how to change a condensed structural formula into a line structure.

The table on the next slide summarize formulas and models used in organic chemistry.

Classifying Organic Compounds

Functional groups are group of atoms (or one atom) that have specific behavioral characteristics in organic compounds.

Organic compounds are classified based on the functional groups that they contain.

Classifying Organic Compounds

The list of common functional groups found in organic compounds are shown here on Table 19.1.

Class of compound	General formula*	IUPAC name**. ***	Molecular formula	Condensed structural formula	Structural formula
Alkane	RH	Ethane (Ethane)	C ₂ H ₆	СН ₁ СН ₃	H-C-C-H
Alkene	$R-CH=CH_2$	Ethere (Ethylene)	C₂H₄	H_2C = CH_2	HC=CH
Alleyne	R-C=C-H	Ethywe (Acetylene)	C ₂ H ₂	нс=сн	н—с=с−н н н
Alkyl halide	RX	Chloroethane (Ethyl chloride)	C ₂ H ₅ Cl	CH ₂ CH ₂ CI	H-C-C-CI H H
Alcohol	ROH	Ethanol (Ethyl alcohol)	C ₂ H ₆ O	сн₃сн₂он	н-с-с-он
Ether	R-O-R	Methoxymethane (Dimethyl ether)	C ₂ H ₄ O	СН,ОСН,	H
Aldehyde	R-C=0 H	Ethanol (Acetaldehyde)	C₂H₄O	сн,сно	н_с_с_н
Ketone	R-C-R	Propanone (Dimethyl ketone)	С,Що	сн,сосн,	н-с-с-с-н
Carboxylic acid	R—C—OH	Ethanoic scid (Acetic acid)	C ₂ H ₄ O ₂	СН,СООН	н-с-с-он
Ester	R—C—OR	Methyl ethanoste (Methyl acetate)	C ₃ H ₄ O ₂	сн,соосн,	н-с-с-о-с-н
Amide	R-C-NH ₂	Ethanamide (Acetamide)	C ₂ H ₃ ON	CH,CONH,	H-C-C-N-H
Amine	R—CH ₂ —NH ₂	Aminoethane (Ethylamine)	C ₂ H ₂ N	CH ₃ CH ₂ NH ₂	H H H-C-C-N-H

^{*}The letter R is used to indicate any of the many possible allot groups ** Class name ending in italia. *** Common name in parentheses

Functional Groups

R-hydrocarbon chain

alkane

ethane CH3CH3

alkene

propene

ethyne

alcohol
$$R-OH$$
 $H-C-C-C-OH$ ethanol CH_3CH_2OH

ether $R-O-R$ $H-C-O-C-H$ ethanol CH_3-O-CH_3

aldehyde $R-C-H$ $H-C-C-H$ ethanol CH_3CHO

Ketone $R-C-R$ $H-C-C-H$ propanore CH_3-C-CH_3

Benzene (aromatic)

nitro R-NOz or R-N-0 H-C-NOz Cyanide R-CN or R=CN

Carboxylate R-COO H-C-C-O

-> Note: this is a carboxylic acid that has lost an electron. It is an ion and has a -1 charge,

Cycloalkane cyclopentane

Cycloalkene

Cycloalkene

cyclopentane

Cycloalkene

cyclohexene

Cycloalkene