AP Calculus AB Summer Assignment

For each of the following questions show all work in the space provided next to the question. You must show your work. There will be a test on the material on Friday September 8, 2017. You will be able to ask questions during class September 5-7, 2017

Multiple Choice Questions

No calculator is allowed for these questions.

- 1. The zeros of the polynomial function
 - $f(x) = x^4 3x^3$ are
 - (A) 0 and 3
 - (B) 0 only
 - (C) 3 only
 - (D) 3 and 4
- 2. Arctan $\sqrt{3}$ is equal to
- * (A) 1
 - (B) $\frac{\pi}{4}$
 - (C) $\frac{\pi}{6}$
 - (D) $\frac{\pi}{3}$
- 3. Find the number of solutions of the equation $\cos^2 x 1 = 0$ for values of x in the interval $[0, 2\pi]$.
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3
- **4.** Solve for x: $e^{2x} = 9$.
 - (A) ln 9
 - (B) ln 4.5
 - (C) ln 3
 - (D) ± 4.5
- 5. Find the range of the piecewise function

defined by
$$f(x) = \begin{cases} (x-1)^2, & x < 1 \\ 2x - 3, & x > 1 \end{cases}$$

- (A) {all real numbers}
- (B) $\{y > -1\}$
- (C) $\{y \ge -1\}$
- (D) $\{y \neq 1\}$

- **6.** Find the equation of the horizontal asymptote of $y = \frac{5x}{x-1}$.
 - (A) y = 0
 - (B) x = 1
 - (C) x = 5
 - (D) y = 5
- 7. Find the equation of the vertical asymptote of

$$y = \frac{5x}{x - 1}.$$

- (A) y = 1
- (B) y = 0
- (C) x = 1
- (D) x = 5
- 8. Given f(x) = 2x 3, find f(x + h).
 - (A) 2x + 2h 3
 - (B) 2x + h 3
 - (C) x + h
 - (D) x + h 3
- 9. If $f(x) = (2x 1)(x^2 + 1)(x 5)^2$, then f(x) has how many real roots?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3
- 10. Solve for *x*: $\log_9 x^2 = 9$.
 - (A) 1
 - (B) 3^3
 - (C) 3^9
 - (D) $\pm 3^9$
- 11. $2 \ln e^{5x} =$
 - (A) 10x
 - (B) $5x^2$
 - (C) $25x^2$
 - (D) e^{10x}

- 12. The values of x that are solutions to the equation $\cos^2 x = \sin 2x$ in the interval $[0, \pi]$ are:
 - (A) $\arctan \frac{1}{2}$ only.
 - (B) $\arctan \frac{1}{2}$ and π .
 - (C) $\arctan \frac{1}{2}$ and 0.
 - (D) $\arctan \frac{1}{2} \text{ and } \frac{\pi}{2}$.
- 13. The graph of $f(x) = \frac{x^2 1}{x 1}$ has
 - (A) a hole at x = 1.
 - (B) a hole at x = -1.
 - (C) a vertical asymptote at x = 1.
 - (D) a vertical asymptote at x = -1.
- **14.** If $\ln x^2 = 6$, then x =
 - (A) $\pm e^6$
 - (B) 9^{v6}
 - (C) e^{√6}
 - (D) $\pm e^{3}$

Free Response Questions

A graphing calculator is required for some questions.

1. Find the domain and range and sketch the graph of $y = e^{\ln x}$.

- **2.** The rational function $y = \frac{ax}{bx + c}$ has a vertical asymptote at x = 2 and a horizontal asymptote at y = 3.
 - (a) Find *a* and *c* in terms of *b*, and express *y* in simplest form.
 - (b) Graph the function, showing the vertical and horizontal asymptotes.

3. Solve the trigonometric equation $4 \sin^2 x - \cos x = 1$ for values of x in the interval $(0, \pi)$.

Multiple Choice Questions

A graphing calculator is required for some questions.

- 1. If $f(x) = x^2 x + 1$, then f(x+1) =
 - (A) $x^2 x + 2$
 - (B) $x^2 + x + 1$
 - (C) $x^2 + x + 3$
 - (D) 1
- 2. Find the domain of $f(x) = \sqrt{x^3 x^2}$.
 - (A) $\{x \ge 1\}$
 - (B) $\{x \ge 1, x = 0\}$
 - (C) $\{x \le 1\}$
 - (D) $\{|x| \ge 1\}$
- **3.** Which of the following is an even function with a domain of all real numbers?
 - (A) $\ln x^2$
 - (B) $e^{x^2} x$
 - (C) $e^{x^2} x^2$
 - (D) $e^{x^3} + 1$
- **4.** Find the domain of $f(x) = \ln(\tan x)$ on the interval $[-\pi, \pi]$.
 - (A) all x in $(-\pi, \pi)$
 - (B) all x in $(0, \pi)$
 - (C) all x in $\left(0, \frac{\pi}{2}\right)$
 - (D) all x in $\left(-\pi, -\frac{\pi}{2}\right)$ and $\left(0, \frac{\pi}{2}\right)$
- 5. $f(x) = \frac{(x-1)^2}{x^2-1}$ has
 - (A) holes at x = -1 and x = 1.
 - (B) vertical asymptotes at x = 1 and x = -1.
 - (C) a horizontal asymptote at y = -1.
 - (D) a hole at x = 1 and a vertical asymptote at x = -1.

- **6.** f(x) is an odd function and the graph of f contains the point (6, 5). Which of the following points is also on the graph of f?
 - (A) (-6,5)
 - (B) (6, -5)
 - (C) (-6, -5)
 - (D) (-5, -6)
- 7. If $f(x) = \sqrt{x-2}$, then $\frac{f(x+h) f(x)}{h} =$
 - (A) $\frac{\sqrt{x-2} + \sqrt{h-2}}{h}$
 - (B) $\frac{\sqrt{xh-2}+\sqrt{x-2}}{h}$
 - (C) $\frac{\sqrt{x-2+h}-\sqrt{x-2}}{h}$
 - (D) $\frac{\sqrt{x+h}-\sqrt{2}}{h}$
- 8. If $f(x) = \frac{1}{x+2}$, then $\frac{f(x+h) f(x)}{h} =$
 - (A) $\frac{h+4}{h(x+2)(x+h+2)}$
 - (B) $\frac{-1}{(x+2)(x+h+2)}$
 - (C) $\frac{-1}{(x+h)(x+h-2)}$
 - (D) $\frac{1}{h(x+2)(x+h+2)}$
- 9. Which of the following functions are odd?
 - $I. \quad y = \ln(x^3)$
 - II. $y = |x^3|$
 - III. $y = e^{x^3}$
 - (A) None
 - (B) II only
 - (C) I and II
 - (D) II and III

10. Which of the following functions are even?

I.
$$y = \ln |x|$$

II.
$$y = |\ln x|$$

III.
$$y = \left| \frac{1}{x} \right|$$

- (A) None
- (B) II only
- (C) I and II
- (D) II and III

Free-Response Questions

A graphing calculator is required for some questions.

1. Find all the zeros (real and complex) of $f(x) = x^3 + 2x - 3$.

2. Sketch $f(x) = \frac{x-1}{x^2-3x+2}$, and state the vertical asymptote(s), horizontal asymptote(s), and holes, if any.

3. Find the zeros and describe the end behavior of f(x) = 2x(x - 1)(x + 1). Is f(x) odd, even, or neither? Explain.

- *4.* For each of the following functions, graph f(x), |f(x)|, and f(|x|). Using these graphs, write a statement about the relationship between the graphs of f(x), |f(x)|, and f(|x|).
 - (a) $f(x) = \cos x$
 - (b) $f(x) = \sin x$
 - (c) $f(x) = x^2 2x$

Multiple-Choice Questions

No calculator is allowed for these questions.

1. Which of the following graphs show(s) a function that has an inverse?

- (A) None
- (B) I only
- (C) II only
- (D) I and II
- **2.** Find the inverse of the equation $y = 2x^3 + 1$.

(A)
$$y^{-1} = \frac{2}{x^3} + 1$$

(B)
$$y^{-1} = -2x^3 + 1$$

(C)
$$y^{-1} = \sqrt[3]{\frac{x-1}{2}}$$

(D)
$$y^{-1} = \frac{\sqrt[3]{x-1}}{2}$$

- **3.** The graphs of a function and its inverse are reflections of each other across
 - (A) the x-axis.
 - (B) the y-axis.
 - (C) the origin.
 - (D) y = x.
- **4.** The composition of a function *f* and its inverse is equal to
 - (A) -1
 - (B) 0
 - (C) 1
 - (D) x

Free-Response Questions

A graphing calculator is required for some questions.

- 1. (a) Sketch the graph of $y = -e^{-x}$. State its domain and range.
 - (b) Solve algebraically for the inverse of $y = -e^{-x}$.

- 2. (a) Find the domain and range of the function $y = \sqrt{x-2+1}$, and sketch the graph.
 - (b) Find the domain and range of the of the inverse of *y*, and solve algebraically for the equation of the inverse.

No calculator is allowed for these questions.

- 1. The following functions have been shifted as described. Circle the equation that matches each description, then sketch its graph.
 - (a) $y = \ln x$ shifted right 2 units.

$$y = \ln (x + 2)$$

$$y = \ln(x+2) \qquad \qquad y = \ln(x-2)$$

$$v = \ln x + 2$$

$$y = \ln x - 2$$

(b) $y = 2^x$ shifted down 1 unit.

$$y=2^x-1$$

$$y=2^{x-1}$$

$$y=2^{x+1}$$

$$y = 2^x + 1$$

(c) y = |x| shifted left 3 units.

$$y = |x + 3|$$

$$y = |x + 3|$$
 $y = |x - 3|$
 $y = |x| + 3$ $y = |x| - 3$

$$y = |x| + 3$$

$$y = |x| - 3$$

(d) $y = x^2$ shifted up 2 units and right 4 units.

$$v = (x - 2)^2 - 4$$

$$y = (x - 2)^2 - 4$$
 $y = (x - 2)^2 + 4$

$$v = (x^2 + 4) + 2$$

$$y = (x^2 + 4) + 2$$
 $y = (x - 4)^2 + 2$

(e) $y = \sin x$ reflected across the x-axis.

$$y = \sin(-x)$$

$$y = \sin(x - 1)$$

$$y = -\sin x$$

$$y = -\sin(-x)$$

- 2. Write the domain for each of the following functions. Then sketch the graph.
 - (a) $y = \ln x^2$
 - (b) y = |x + 2|
 - (c) $y = -\ln(x 1)$

Multiple Choice Questions

A graphing calculator is required for some of these questions.

- 1. The graph of $y = x^2$ first reflected across the x-axis and then shifted down one unit is
 - (A) $y = 1 x^2$
 - (B) $y = 1 + x^2$
 - (C) $y = 1 x^{-2}$
 - (D) $v = -1 x^2$
- **2.** The graph of $y = x^2$ first shifted down one unit and then reflected in the x-axis is
 - (A) $y = x^2 1$.
 - (B) $y = 1 x^2$.
 - (C) $y = 1 + x^2$.
 - (D) $v = 1 x^{-2}$.

3. The inverse of the function $y = x^2$ with domain = $\{x \le 0\}$ has equation.

(A)
$$y = x^2$$
.

(B)
$$y = \sqrt{x}$$
.

(C)
$$y = \pm \sqrt{x}$$
.

(D)
$$y = -\sqrt{x}$$
.

Free-Response Questions

A graphing calculator is required for some questions.

1. Sketch the graph of $y = \frac{1}{x}$, and then use it to sketch the graphs of the following functions without a calculator. Check your results by graphing each equation in the calculator.

(a)
$$y = \frac{1}{x - 1}$$

(b)
$$y = \frac{1}{x} - 1$$

(c)
$$y = \frac{1}{x+2} + 2$$

(d) the inverse of
$$y = \frac{1}{x}$$

2. Describe the translations and/or reflections that transform $y = x^{2/3}$ into the following:

(a)
$$y = x^{2/3} + 2$$

(b)
$$y = -x^{2/3} - 3$$

(c)
$$y = (-x)^{2/3}$$

(d)
$$y = (x - 1)^{2/3} + 1$$