Chapter 22 Practice Problems, Review, and Assessment

For all problems, assume the battery voltage and the lamp resistances are constant.

- 16. A lamp draws a current of 0.50 A when it is connected to a 120-V source.
 - **a.** What is the resistance of the lamp?
 - **b.** What is the power consumption of the lamp?

SOLUTION:

a

$$R = \frac{V}{I} = \frac{120 \text{ V}}{0.50 \text{ A}} = 2.4 \times 10^2 \Omega$$

b.
$$P = IV = (0.50 \text{ A})(120 \text{ V}) = 6.0 \times 10^1 \text{ W}$$

ANSWER:

a.
$$R = 2.4 \times 10^2 \Omega$$

b.
$$P = 6.0 \times 10^1 \text{ W}$$

- 17. A 75-W lamp is connected to 125 V.
 - **a.** What is the current through the lamp?
 - **b.** What is the resistance of the lamp?

SOLUTION:

a.

$$I = \frac{P}{V} = \frac{75 \text{ W}}{125 \text{ V}} = 0.60 \text{ A}$$

b.

$$R = \frac{V}{I} = \frac{125 \text{ V}}{0.60 \text{ A}} = 2.1 \times 10^2 \text{ }\Omega$$

ANSWER:

a.
$$I = 0.60 \text{ A}$$

b.
$$R = 2.1 \times 10^2 \Omega$$

Chapter 22 Practice Problems, Review, and Assessment

Chapter Assessment Section 1 Currents and Circuits: Mastering Problems

- 51. A motor is connected to a 12-V battery, as shown in **Figure 20.** (Level 1)
 - **a.** How much power is delivered to the motor?
 - **b.** How much energy is transformed if the motor runs for 15 min?

Figure 20

SOLUTION:

a.
$$P = VI = (12 \text{ V})(1.5 \text{ A}) = 18 \text{ W}$$

b. $E = Pt = (18 \text{ W})(15 \text{ min})(60 \text{ s/min})$
= $1.6 \times 10^4 \text{ J}$

ANSWER:

a.
$$P = 18 \text{ W}$$

b.
$$E = 1.6 \times 10^4 \text{ J}$$

59. Dryers A 4200-W clothes dryer is connected to a 220-V circuit. How much current does the dryer draw? (Level 1)

SOLUTION:

$$P = IV$$

$$I = \frac{P}{V} = \frac{4200 \text{ W}}{220 \text{ V}} = 19 \text{ A}$$

ANSWER:

$$I = 19 A$$

Chapter 22 Practice Problems, Review, and Assessment

- 60. **Flashlights** A flashlight bulb is connected across a 3.0-V potential difference. The current through the bulb is 1.5 A. (Level 1)
 - **a.** What is the power rating of the bulb?
 - **b.** How much electrical energy does the bulb transform in 11 min?

SOLUTION:

a.
$$P = IV = (1.5 \text{ A})(3.0 \text{ V}) = 4.5 \text{ W}$$

b. The definition of power is

$$P = \frac{E}{t}$$
, so

$$E = Pt$$

=
$$(4.5 \text{ W})(11 \text{ min}) \left(\frac{60 \text{ s}}{\text{min}}\right)$$

= $3.0 \times 10^3 \text{ J}$

ANSWER:

a.
$$P = 4.5 \text{ W}$$

b.
$$E = 3.0 \times 10^3 \text{ J}$$