Name					
Period	Date	/	/		

6 • Energy and Chemical Reactions

HESS'S LAW CALCULATIONS

The enthalpy of the reactants, $H_{reactants}$ and the enthalpy of the products, $H_{products}$ depend on the bonding of the reactants and products... nothing else. So, the $\Delta H_{reaction}$ only depends on the initial and final state of the reaction, not how you got from one state to another state. It is called a "state function".

Practically speaking, if we can find several equations that "add up" to the equation we want, the $\Delta H_{reactions}$ will add up to the overall ΔH . This is called Hess's Law.

Heats of Formation: Write the formation equations for the following. [See Table 6.2 on page 270 of text.]

Compound	Formation Equation	$\Delta H_f (kJ \cdot mol^{-1})$
CH ₄ (g)	$C(s) + 2H_2(g) \rightarrow CH_4(g)$	-74.8
$H_2O(1)$		-285.8
$H_2O(g)$		-241.8
CO ₂ (g)		-393.5
$C_2H_6(g)$		-84.7
$C_3H_8(g)$???
$C_4H_{10}(g)$		-125.6

Example in class:

Calculate the $\Delta H_{combustion}$ for CH₄:

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$

a) Calculate the heat of combustion, $\Delta H_{combustion}$, for ethane, $C_2H_6(g)$

b)	Calculate the energy for the reaction between nitrogen and oxygen to form nitrogen dioxide:
	$2NO(g) + O_2(g) \rightarrow 2NO_2(g) \dots \Delta H = ?$

Use these two reactions:

$$\begin{split} N_2(g) + O_2(g) &\rightarrow 2NO(g) \dots \Delta H = 180 \text{ kJ} \\ N_2(g) + 2O_2(g) &\rightarrow 2NO_2(g) \dots \Delta H = 68 \text{ kJ} \end{split}$$

c) Notice that we do the same thing each time.

If a compound is a **reactant**... what do you do to the equation? ______ What do you do to the
$$\Delta H_f$$
? _____ What do you do to the equation? _____ What do you do to the ΔH_f ? _____

Write the "shortcut version" of Hess's Law (when using H_f's):

$$\Delta H_{\rm rxn} = \Sigma$$

Compound	$\Delta H_f (kJ \cdot mol^{-1})$
$H_2O(1)$	-285.8
CO ₂ (g)	-393.5
$C_4H_{10}(g)$	-125.6

c) Use this shortcut to calculate the $\Delta H_{combustion}$ of butane, $C_4H_{10}(g)$.

d) The heat of combustion of propane, C_3H_8 , is $-2220.0 \text{ kJ} \cdot \text{mol}^{-1}$. Set up the shortcut for the calculation of the $\Delta H_{combustion}$ of propane. Use this information to calculate the ΔH_f of C_3H_8 .