Name ______ per____ date____ mailbox______

Heat Conductometer - Handel w/ Metal Spokest

Reference & background reading: Transferring Thermal Energy Conduction p164 & Specific Heat p161

Materials:

- 1 Conductometer
- Wax chips
- Bunsen burner
- Goggles
- Graph Paper
- Stop watches
- Match heads optional

Label: central hub & spoke (2pts)

Reading:

There are several methods of determining the diverse conductivity of metals using the spoke type conductometer. In each method, heat is applied to the central hub. The heat flows out along the spokes of each metal to the ends. Some heat is consumed in raising the temperature the metal of the spokes, some heat is lost to the air through convection and some heat is lost by radiation. The heating of the spokes involves more than thermal conductivity of the metal alone. It involves three factors; atomic weight (mass) of the metal, specific heat and conductivity of the individual metals.

To demonstrate the conduction of heat from the aluminum central hub to the ends of the spokes, we will place a chip of wax in the curvatures near the end of each spoke. You will want to make sure that each little curvature or dimple gets a tiny chip or ball of wax. The spokes which conduct heat the best, will melt their wax chips first. Another method is to place match heads in the curvature at the end of each spoke. The matches should ignite in order of the metal with the lowest specific heat, to the metal with the highest. The property of metals' ability to conduct heat is demonstrated with this simple experiment during our lab.

As a matter of student interest, you may like to note the position in the periodic table of the *good* heat conductors of lower specific heats verses the poorer ones with higher specific heats. In metals, thermal conductivity is highest in the metals having a large number of free electrons such as the group 1 elements. Alloys of these metals with a member of group 6, 7 or 8 are usually very poor conductors and even lower than the group 6, 7, or 8 metals in their pure form.

Source (Morris and Lee Co.)

Prelab QUESTIONS cont:

Recall that group 1 from the periodic table are good conductor, while 6,7,8 are poorer heat conductors.

Look up and write down group number from periodic table of each metal element.

Reference DATA:

					V
<u>Metal</u>	Periodic Table Symbol	Hub Marking	Conductivity	Atomic Mass	Group Number
Copper		CU	1.00		
Aluminum		AL	0.50		
Brass	Cu/Zn	BS	0.26	1	
Nickel		NI	0.14		
Iron		FE	0.11		
Stainless Steel	Fe/Cr/Ni	SS	0.04	1 1	

Record periodic table symbol

Record atomic mass for each of the metals above See attached periodic table or use one in textbook.

6pts

	me _	per date mailbox
		: To obtain best performance from the conductometer apparatus, do not heat it sively. Your Bunsen burner flame should be turned down to a 1.5" flame.
CA	.000	sively. Tour buriour burner haine should be turned down to a 1.0 haine.
P	RC	OCEDURE:
	1.	Choose partner to ignite Bunsen burner & one partner to hold conductometer
	2.	Setup Bunsen burner & load wax into conductometer
	3.	Safety check: all loose clothing tucked in and hair tied up, goggles on wait approval to ignite BB.
	4.	SAFTEY – conductometer is going to get HOT! Be aware of your surroundings. Where will you set it down when done? How will YOU assure no one gets burned?
		3pt
	5.	Ignite burner and then make careful observations. Record which spokes' wax melts first, second, third, etc. (Record on your diagram below)
	6.	Make sure your conductometer diagram is drawn and ready to be labeled before you start. Have fun and be safe.

DIAGRAM:

Draw conductometer **1pt** Label each metal or alloy **5pt**

Record the order by numbering each spoke clearly 1-5, when wax starts to melt 5pt

DATA TABLE:

<u>Metal</u>	Hub Marking	Conductivity	Order in which the wax melts
Copper	CU	1.00	
Brass	BS	0.26	
Nickel	NI	0.14	
Iron	FE	0.11	
Stainless Steel	SS	0.04	

Record the number from the diagram above here for each of the spokes in the order wax melted.

5pt

per	date	mailbox
erve from your Refer	<mark>ence DATA</mark> ta	able between, <u>Conductivit</u> y
		4pt
transferred while heatii	ng your conduct	ometer?
		3pt
nemselves did not melt	when placed in	the Bunsen burner flame.
		2pt
dle of the conductome	ter did not get ho	ot during the experiment.
		2pt
ou observe from your	DATA TABL	E: between, Conductivity
elts? Does the wax me	lt faster or slowe	er based on conductivity?
		4pt
t -	ransferred while heating the serve from your ransferred while heating the serve from your rou observe from your	ransferred while heating your conduct when placed in the conductometer did not get he conductometer did

MAKING SCIENCE LAB RELEVANT:				
Directions: watch <u>Brilliant Newfoundlander Invents the Solution!</u> https://youtu.be/bRZvAAqzXIw				
a. Which metal is the central hub in our conductometer made of again?				
Hint see Additional Background pg1				
	1pt			
b. Why are aluminum cans such a great idea for this invention? Use the wo specific heat and conductivity	rds			
	3pt			
c. What does the invention do?				
	2pt			
d. Discuss a type of heat energy it uses and explain how?				
	3pt			

per_____ date____ mailbox_____

Name _____

87 Francium 223.020	CS Gesium 132.905	37 P.b Rubidium 84.468	19 X Potassium 39.098	11 Na Sodium 22,990	3 Lithium 6.941	Hydrogen 1.008
Radium 226.025	56 Ba Barium 137.327	Strontium 87.62	20 Ca Calcium 40.078	Mg Magnesium 24.305	Beryllium 9.012	2 II A
89-103	57-71	39 Yttrium 88.906	21 Sc Scandium 44.956	3B 3		
Rutherfordium [261]	Hafnium 178.49	7 Zr Zirconium 91.224	22 Ti Titanium 47.88	4 IVB 4B		
105 Dubrium [262]	73 Ta Tantalum 180.948	Nicobium 92.906	23 Vanadium 50.942	5B 85 5		
106 Sg Seaborgium [266]	Tungsten 183.85	Mo Molybdenum 95.94	Cr Chromium 51,996	6B 8 6		
107 Bh Bohrium [264]	75 Re Rhenium 168.207	13 Tc Technetium 98.907	Mn Manganese 54,938	7 VIIB 7B		Perio
108 Hassium [269]	76 Os 0smium 190.23	Ruthenium 101.07	Fe 100 100 100 100 100 100 100 100 100 10	~~ ~		Periodic Table of the Elem
Meitnerium [268]	77 r Iridium 192.22	Ph Rhodium 102.906	27 Co cobatt 58.933	 8 ≦ 9 		able
Mt Ds Rg Meirnerium Darmstadtium Roentgenum [268] [269] [272]	Platinum 195.08	Pd Palladium 106,42	28 Nickel 58.693	Ja		of the
Roentgenum [272]	79 Au Gold 196.967	Ag Silver 107.868	29 Cu copper 63.546	ਜ਼ਜ਼≐		Elem
Cn Copernicium	Hg Mercury 200.59	48 Cd Cadmium 112.411	Zn Zn 65.39	12 2B		nents
Ununtium unknown	81 Thallium 204.383	49 In Indium 114.818	31 Ga Gallium 69.732	13 Aluminum 26.982	80ron 10.811	3A 13
114 Flerovium [289]	Pb Lead 207.2	Sn 118.71	Gemanium 72.61	Silicon 28.086	Carbon 12.011	1 1 1 4 A A A A A A A A A A A A A A A A
Uup Ununpentium unknown	83 Bi Bismuth 208.980	51 Sb Antimony 121.760		Phosphorus 30.974	Nitrogen 14,007	5A A 5
Livermotium Ununseptium [298] Ununknown	Polorium [208.982]	Tellurium 127.6	Selerium 78.09	16 Sulfur 32.066	0 0 0 0 15,999	6A VIA
Uus Ununseptium unknown	85 At Astatine 209.987	53 lodine 126.904	35 Br Bromine 79,904	17 Chlorine 35,453	9 Fluorine 18.998	17 VIIA 7A
Uuo Ununoctium unknown	Radon 2222.018	54 Xenon 131,29	36 Krypton 84.80	18 Argon 39,948	10 Neon 20.180	18 VIIIA 8A 8A 4 003

	Actinide Series	Lanthanide Series
All Me	Actinium 227.028	Lanthanum 138.906
Alkali Metai	90 Th Thorium 232.038	58 Ce Cerium 140.115
Alkaline Earth	Pa Pa Protactinium 231.036	Praseodymium
Transition Metal	92 Uranium 238.029	Necdymium 144.24
Semimeta	93 Np Neptunium 237.048	Pm Promethium 144.913
Nonmeta	Plutonium 244.064	Sm Samarium 150.36
_	95 Am Americium 243,061	63 Europium 151.966
Basic Metal	96 Cm curium 247.070	Gadolinium 157.25
Halogen	97 BK Berkelium 247.070	Tb Teiblum 158.925
Noble Gas	98 Cf Californium 251.080	Dy Dysprosium 162.50
Lanthanid	99 Einsteinium [254]	Ho Ho Holmium 164.930
de Actinide	100 Famium 257.095	68 Erbium 167,26
nide	Md Md Mendelevium 258.1	Tm Thullum 168,934
	102 Nobelium 259, 101	70 Yb Ytteibium 173.04
	103 Lr Lawrencium [252]	71 Lu Lutetum 174,967