W/I	HS	/ AP	Rio	/ Mo	nson
V V L	. 10	/ ^-	טוט ו	IVIU	ווטטווי

Name Date Per.

Chapter 9 Study ?'s (part 2): Glycolysis and the Krebs Cycle (9.2 & 9.3; p. 168-172)

1) Complete the table below to summarize the <u>first two main stages</u> of cellular respiration (HINT: see title of these study questions!):

Name of stage:	Where does it occur?	Summary description of events:
2) SEE NOTES and CH 9: Create a and substrate-level phosphorylatio which stages they occur, and relative	chart or table in which you distinguish be <u>n</u>. (Include: their differences in location, amounts of energy produced)	tween: oxidative phosphorylation method of phosphorylation, in
3a) Summarize the energy yield of G molecules.	SLYCOLYSIS (per 1 molecule of glucose)	. Include ALL energy-storage
3b) Account for the 6 carbon atoms fr they at the end of glycolysis?)	rom the original molecule of glucose that o	entered glycolysis. (Where are
3c) Does glycolysis require oxygen pr	resence to occur?	

4) **MAKE CONNECTIONS**: Step 3 in Figure 9.9 is a major point of regulation of glycolysis. The enzyme phosphofructokinase is allosterically regulated by ATP and related molecules. Considering the overall result of glycolysis, would you expect ATP to inhibit or stimulate activity of this enzyme? (HINT: make sure you consider the role of ATP as an allosteric regulator, not as a substrate of the enzyme!).

5a) Prior to the Krebs cycle, this step is called "pyruvate	oxidation"). In the space below		
1			
2			
3			
b) What is the energy sto l	rage molecule that is generated	during this intermediate	e step?
a) In the Krebs cycle, what	t molecule is given off as "exhaus	st", or waste?	
b) For what reason is the k	Krebs cycle appropriately named	a <u>CYCLE</u> ? (HINT: which	ch molecule is "recycled"?)
	I CoA) molecule that enters the ked, as well as the number and t y		
nolecules that are generate ate of each type of molece *a chart may be helpful to		ype of "waste" molect t go or how is it used	ules generated. What is the
nolecules that are generated to be a chart may be helpful to ENERGY STORAGE	ed, as well as the number and to ule you listed?? (where does it organize all molecular productions) HOW MANY PRODUCED?	ype of "waste" molect t go or how is it used cts HOW MANY PRODUCED?	FATE of molecule? (where does it go / how is it used by the
nolecules that are generated to be a chart may be helpful to ENERGY STORAGE	ed, as well as the number and to ule you listed?? (where does it organize all molecular productions) HOW MANY PRODUCED?	ype of "waste" molect t go or how is it used cts HOW MANY PRODUCED?	FATE of molecule? (where does it go / how is it used by the