IB Physic 16 A-D Group Qui
NameShow your work, and circle your answers and use sig figs to receive full credit.
$F_G = G \frac{m_1 m_2}{r^2}$ $F_E = k \frac{q_1 q_2}{r^2}$ - Inverse square force laws
1. What is the force of attraction between a -10.1 μ C charge and a +34.1 μ C charge if their centers are 67.0 cm apart? Is it a force of attraction or repulsion?
2. At what distance is the force of repulsion between a 2.00 C charge and a 3.00 C charge equal to 4.45 N (1 pound of force, or 16 ounces of force)
3. What is the force of gravity between a 23.0 kg object on the surface of the moon. The moon has a mass of 7.35×10^{22} kg, and a radius of 1.738×10^{6} m.
4. 450. Kg wrecking ball experiences a force of attraction of 6.30×10^{-10} N to a metal sphere that is 15.0 m away. What is the mass of the sphere?
5. Two point masses have a force of attraction of 2.30×10^{-12} N when they are separated by 56.0 cm. What is their separation if the force of attraction is 5.80×10^{-12} N?
6. Two point charges have a force of repulsion of 45.3 N when they are 2.30 m separated. What is the force of repulsion if they are separated by only 1.25 m?

7. Two point charges attract each other with a force of $1.40~\rm N$ when they are $2.20~\rm m$ apart. How far apart are they if the force of attraction is $5.60~\rm N$?

8	Find the	e net forc	e and dire	ection on	masses A	В	and	\mathbf{C}
ο.	I mu un		c and unc	CHOII OII	masses A	, D	anu	\sim .

 $2.80\,\mathrm{m}$

 $4.50\,\mathrm{m}$

 $3.70\mathrm{x}10^6\,\mathrm{kg}$

 $1.90\mathrm{x}10^6\,\mathrm{kg}$

5.60x106 kg

4 =	

9. Find the net force and direction on charges A, B and C:

34.0 cm

23.0 cm

-81.0 μC

 $+52.0\,\mu C$

-67.0 μC

A = _____

B = ____

C = ____

10. Each grid line is a meter. Charge A is -430. μ C, and charge B is +120. μ C, and C is +780. μ C. Calculate the force on charge C. Draw the force vector and label its magnitude and direction.

11. Each grid line is a meter. Mass A is $1.20x10^6$ kg, and mass B is $3.10x10^6$ kg, and C is $6.80x10^6$ kg. Calculate the force on mass A. Draw the force vector and label its magnitude and direction.

