- 3.1: Solve Linear Systems by Graphing
- 3.2: Graph Systems of Linear Inequalities

Objectives:

- 1.To solve a system of linear equations by graphing
- 2. To classify a system of linear equations as consistent (independent and dependent) or inconsistent
- 3. To graph a system of linear inequalities

Vocabulary

As a group, define each of these without your book. Give an example of each word and leave a bit of space for additions and revisions.

System of Equations

Intersection

System of Equations

A system of equations is a collection of 2 or more equations, linear or not, with the same variables.

The **solution** to a system of equations is the set of all points (x, y) that satisfy <u>all</u> the equations in the system.

In general, for a system to be solvable, you need one equation for every variable in the system.

Linear System of Equations

We have a linear system of equations when the system consists of two variables, x and y.

$$Ax + By = C$$
 Equation 1
 $Dx + Ey = F$ Equation 2

The solution to the system is the ordered pair (x, y) that satisfies both equations.

Investigation 1

In this Investigation, we will use a table to solve a system of equations.

Step 1: Press "Y=" to enter the equations y = 2x + 4 and y = -3x + 44.

```
Y 1 2 X + 4
Y 2 3 - 3 X + 4 4
Y 3 =
Y 4 =
Y 5 =
Y 6 =
Y 7 =
```

Investigation 1

Step 2: Press 2^{nd} "TABLE" to access the Table Set menu. Set the starting x-value at 0 and the step value to 1. Now press the

TABLE button.

00000

Investigation 1

Step 3: Scroll through

the table until you find the value of x for which Y1 = Y2. What is the solution to the system of equations?

Use a table to solve the system.

$$y = 2x + 5$$
$$y = -x + 2$$

Geometric Interpretation

Geometrically, the solution to a system of equations occurs at the intersection of the graphs of the equations.

Geometric Interpretation

So a simple way to solve a system of equations is to:

- 1.Graph the equations.
- 2. Find the point of intersection

Graph the linear system and find the solution. Then check the solution algebraically.

$$5x - 2y = -10$$

$$2x - 4y = 12$$

Graph the linear system and find the solution. Then check the solution algebraically.

$$1.3x + 2y = -4$$
$$x + 3y = 1$$

$$2.8x - y = 8$$
$$3x + 2y = -16$$

Graph the linear system and find the solution. Then check the solution algebraically.

$$1.2x + 5y = 6$$
$$4x + 10y = 12$$

$$2.3x - 2y = 10$$
$$-3x + 2y = -2$$

Classifying Systems

When solving a system of equations, there are three possible outcomes.

- 1. The system has exactly one solution
 - One point of intersection
 - Considered an independent, consistent system

Exactly one solution

Classifying Systems

When solving a system of equations, there are three possible outcomes.

- The system has infinitely many solutions
 - Essentially the same line, intersects everywhere
 - Considered a dependent, consistent system

Infinitely many solutions

Classifying Systems

When solving a system of equations, there are three possible outcomes.

- 3. The system has no solution
 - Lines are parallel and never intersect
 - Considered an inconsistent system

No solution

Solve the system. Then classify the system as consistent and independent, consistent and dependent, or inconsistent.

$$1.3x + 2y = -4$$
$$x + 3y = 1$$

$$2.8x - y = 8$$
$$3x + 2y = -16$$

Solve the system. Then classify the system as consistent and independent, consistent and dependent, or inconsistent.

$$1.2x + 5y = 6$$
$$4x + 10y = 12$$

$$2.3x - 2y = 10$$
$$-3x + 2y = -2$$

A soccer league offers two options for membership planes. Option A includes an initial fee of \$40 and costs of \$5 for each game played. Option B costs \$10 for each game played. After how many games will the total cost to the two options be the same?

Systems of Linear Inequalities

The graph of the system is the intersection of the red and blue regions.

A system of linear inequalities is a collection of 2 or more linear inequalities with the same variables.

A **solution** to a system of linear inequalities is the set of ordered pairs (x, y) that satisfy all the inequalities in the system.

Graphing a System of Lls

Another Texas dance (you can almost hear the crummy music):

Step 1: Graph each inequality in the system.

- Using map pencils, like in geography, makes this fun and, well, colorful.
- Step 2: Identify the region that is common to all the inequalities in the system.
 - This is the region that got colored with every map color.

$$y \le 3x + 2$$
$$y > -x + 4$$

$$v > -x + 4$$

$$4x + 2y \ge 8$$

$$y < -2x - 3$$

$$y < 2$$
$$y \ge |x - 1|$$

1.
$$y \le 3x - 2$$

 $y > -x + 2$

2.
$$2x - (1/2)y \ge 4$$

 $4x - y \le 5$

$$3. \ y \le 4$$
$$y \ge |x - 5|$$

$$3x + 2y > -6$$

 $-5x + 2y > -2$
 $y < 5$

Assignment

- P. 156-158: 1, 2-30 even, 31-34, 36, 41, 42
- P. 171-173: 1, 6-33
 M3, 38, 41, 42
- PSAT Presentation, Math Question Types

