Physics: Graph, Slope, and Equation Concepts Review

Name				
_				

3/19/14

Date Period

- A graph of "A versus B" always has A on the vertical axis and B on the horizontal axis.
- The slope of a section of a graph is the change in y over change in x. If the graph is a curve, the slope of the graph at a certain point can be found by drawing a tangent to the graph, and finding the slope of the tangent. The unit of the slope will equal the y-unit divided by the x-unit.
- The "area under a graph" is the area between the graph and the x-axis. This is a very useful quantity in many situations. The unit of the slope will equal the y-unit multiplied by the x-unit.

For each of the following, sketch a small graph and state:

- a) what the units of the slope are
- b) what the units of the area are
- 1. Persons versus hours, increasing quadratically

2. Meters per second vs. seconds, constant

4. Force (N) vs. distance (m), directly proportional

3. Grams per mL vs. degrees Celsius; inversely proportional

5. Meters vs. kilograms, decreasing linearly

Solving an equation for a variable

Very often, you are given an equation in physics, but it is not solved for what you need. For example, $\mathbf{F} = \mathbf{ma}$ is Newton's 2nd Law, solved for \mathbf{F} , force. But you may be looking for \mathbf{a} , acceleration.

You need to divide both sides of the equation by **m**, mass, to get $a = \frac{F}{m}$

This is important, because a lot of times, variables will cancel out of an equation, so you don't need to know that variable. Also, you may be asked for the "general solution" for a variable, which means you need the equation, solved for that variable.

Solve the following equations for the variable indicated:

On the right side, indicate in sentences what algebraic steps you did. (Example: Divide both sides by 3)

1)
$$3y = 2x + 7$$
, for x

2)
$$d = \left(\frac{v_o + v_f}{2}\right)t$$
, for t

3)
$$2ad = v_f^2 - v_o^2$$
, for v_f

4)
$$T = 2\pi \sqrt{\frac{m}{k}}$$
, for k

5)
$$\frac{1}{R} = \frac{1}{X} + \frac{1}{y}$$
, for R

You may need to substitute an equation into another equation, in place of a variable.

$$x = y + 9$$
$$2x - 5y = 24$$

$$P = IV$$

$$V = IR$$

8) Analyze this graph to the best of your ability. You may give both qualitative and quantitative observations.

Power used by motor (Watts)