	 Simplifying algebraic expressions and solving equations and
Essential	inequalities are foundational tools for further algebraic study and
Understandings	for practical applications
ondorotantanigo	 Graphs, tables, and linear functions can be used to make
	predictions and active problems
	predictions and solve problems.
	 How does one model linear and quadratic algebraic expressions
	geometrically?
	 How does the Distributive Property work with numerical and
	algebraic expressions?
	 How does one simplify algebraic expressions without the geometric
	model?
	How does one evaluate expressions with square roots, exponents
	and rational numbers?
	 How does one solve one- and two-step equations with integers?
	- How does one solve one- and two-step equations with integers:
	 How does one solve equations with variables on both sides of the any time
	How does one solve equations which need simplification?
	Are there equations which do not have solutions or which have
	more than one solution?
	How does one translate verbal sentences into equations?
	How does one apply equation solving to practical situations?
	How does one solve equations using geometric formulas?
Essential	How does one check the solution of an equation?
Questions	 How does one write an inequality from a sentence?
Questions	 How does one write an inequality in one variable and write an
	in a subject of the graph 2
	inequality from a graph?
	How does one solve simple one-variable inequalities?
	How does one interpret story graphs that have positive and
	negative relationships?
	 What are the connections between ordered pairs expressed in
	tables of values, the linearity of a graph, and ratios made between
	ordered pairs?
	What are the connections between the steepness of a line and the
	ratios made by the change in the v-values and the change in the x-
	values?
	What is the definition of the slope of a line and what are the types
	of clones?
	 How is slope applied in practical situations?
	 How are lined expressed as equations in slope intercent form?
	- now are lines expressed as equations in slope-intercept form?
	• what are the characteristics of an equation that would produce a
	non-linear graph?
	 How can lines and linear equations be used to make predictions
	from data?
	 How is a line graphed using either a table of values or slope-
	intercept form?

	 Algebraic expressions can be medaled geometrically.
	- Algebraic expressions can be modeled geometrically.
	geometrically.
	 Solving equations follows a logical sequential process.
	A solution of an equation is a number which when substituted for
	the variable makes the equation a true statement.
	There are some equations which have no solutions or many
	solutions.
	 An inequality is a statement expressing a less-than or greater-than
	relationship.
	Inequalities are solved like equations except that if an inequality is
	multiplied or divided on both sides by a negative the relationship
	must be reversed
	 A solution of an inequality is a number which when substituted for
Essential	the variable makes the inequality a true statement
Knowlodgo	The direction of lines on coordinate planes indicates specific
Kilowiedge	relationships between the units shown on the axes
	There are important ratio connections found in tables of values
	• There are important failo connections found in tables of values which indicate whether or not a graph will be linear, and if so the
	which indicate whether of hot a graph will be linear, and it so the
	Steepness and direction of the graph.
	I ne slope ratio, which is change in y/change in x, can be found
	from any two ordered pairs and has practical meaning as a rate of
	change.
	• An equation in slope-intercept form $(y = mx + b)$ will be a linear
	graph and the parts of the equation indicate the slope and the y-
	intercept of the graph.
	 Directly proportional relationships found in tables and graphs can
	be expressed in the form $y = kx$.
	• The $y = kx$ form graphs as a line which intersects the origin.
	 The equations of horizontal and vertical lines have special forms.
	 Lines and linear equations can be used to make predictions from
	data.
	Terms:
	 algebraic expressions, algebraic equation, combine like
	terms, coefficient, constant, constant rate of change.
Vocabulary	Distributive Property, evaluate, inequality, intercepts, inverse
	operations isolate the variable line of best fit linear pattern
	nonlinear pattern, rate of change, sequence, simplify
	solution solve systems of linear equations variable
	 Model algebraic expressions geometrically (LR A)
	 Use variables to represent unknown quantities to write linear
Eccontial	algobraic overcesions (L. P. A)
ESSEIILIDI	aiyevial explessions. (I, R, A)
JKIIIS	Ureate, evaluate, and simplify numerical and algebraic expressions
	(with square roots, exponents, rational numbers) using properties
	of the real number system and algebraic properties. (I, R)

	 Demonstrate that two expressions are or are not equivalent by
	using geometric models, algebraic properties, or substitution. (I, R)
	Solve any linear equation of the form ax + b = cx + d including
	those using the distributive property and combining like terms. (I,
	R, A)
	 Solve formulas for a variable using one transformation. (I)
	 Solve problems involving systems of linear equations in a context
	using informal methods. (I)
	 Check solutions of equations (R A)
	 Translate verbal sentences and applications into equations and
	solve. (I, R)
	 Solve equations using geometric formulas. (I, R)
	Recognize that some equations have no solutions and others have
	solutions where the variable can be all Real numbers. (I)
	 Use graphs to estimate solutions of equations and linear systems.
	(I)
	 Solve linear inequalities in one variable. (I)
	 Interpret the solutions to linear inequalities. (I)
	 Write algebraic expressions for a variety of linear and nonlinear
	patterns found in tables, graphs, sequences, and applications.
Essential	(I, R)
Skills	 Generalize a nonlinear relationship using words or symbols or
	generalize a common nonlinear relationship to find a specific case.
	(\mathbf{i})
	 Distinguish between linear and nonlinear relationships in tables,
	graphs and equations. (I, R)
	 Recognize directly proportional relationships from data in a table.
	graph, or formula. (I. R)
	 Translate common directly proportional relationships into symbolic
	statements $y = kx$ and graphs. (I)
	• Interpret the slope and y-intercept of the graph of $y = kx$ in terms of
	a given context. (I)
	 Express the connections found between ordered pairs in tables of
	values in terms of linearity of the graphs of the ordered pairs and in
	terms of the ratios made in the ordered pairs. (I, R)
	 Determine the slope and identify types of slopes. (I. R)
	Determine the connections between the steepness of a line and
	the ' $\Delta v/\Delta x$ ' ratios. (I. R)
	 Use the slope as a rate of change in practical situations. (LR)
	 Identify the slope and v-intercept in linear equations (I, R)
	• Graph linear equations in slope-intercept $v = mx + b$ form (I R)
	 Use linear graphs to make predictions from data sets (I R)

	D. Algebra
	Symbols and Expressions
	D1.Students create, evaluate, and manipulate expressions.
	a. Create and evaluate expressions using real numbers.
	b. Add and subtract linear expressions.
	c. Apply the properties of the real number system, including
	distributive and associative laws, to create equivalent
	expressions.
	Equations and Inequalities
	D2. Students understand and solve problems involving linear
	equations.
	a Solve any linear equation of the form $ax + b = cx + d$ (Gr 7
	NECAP)
	b. Recognize that, in general linear equations have just one
	solution – but know also that some linear equations can
	have no solution and those linear equations that are
Related	identities have every value of x as a solution
Maine Learning	c Use graphs to estimate solutions to equations and systems
Results	of equations, check algebraic approaches, provide
nesuits	alternative solution nation and communicate the solution to a
	D2 Students understand and salve linear inequalities in one
	a Poprosont problem situations as inequalities
	b. Solve linear inequalities
	D. Solve interinequalities
	C. Interpret the solutions to linear inequalities.
	Functions and Relations
	D4.Students understand and use basic properties of linear
	relationships, $y = mx + b$.
	a. Understand that linear relationships are characterized by a
	b Understand that the graph of a linear relationship y my th
	b. Onderstand that the graph of a linear relationship $y = mx + b$ is a line where the slope is <i>m</i> and <i>b</i> is the v-coordinate of
	the point where the graph crosses the y-coordinate of
	when $x = 0$
	c Translate common linear phenomena into symbolic
	statements and graphs, and interpret the slope and y-
	intercept of the graph of $y = my \pm h$ in terms of the original
	y = 11x + 0 In terms of the Original

	NECAP
	Functions and Algebra
	M (F & A) 8-1
	Identifies and extends to specific cases a variety of patterns (linear and nonlinear)
	generalizes a nonlinear relationship using words or symbols;
	or generalizes a common nonlinear relationship to find a
	specific case.
	M (F & A) 8-2
NECAP	distinguishes between linear and nonlinear relationshipsin tables, graphs, equations, or problem situations.
	describes how change in the value of one variable relates to
	change in the value of a second variable in problem situations
	with constant and varying rates of change.
	M (F & A) 8-3
	simplify algebraic expressions (including those with square
	roots, whole number exponents, or rational numbers)
	M (F & A) 8-4
	informally solve problems using systems of linear equations