Science Unit 3: Force and Motion

Essential Understandings	 Force can change motion. Cultures have found different technological solutions to deal with needs or problems.
Essential Questions	 What forces can affect the motion of an object? How does weight affect the amount of force needed to move an object? What forces cause resistance? How do machines help us? What are some technological solutions to needs or problems that have been developed by ancient and modern cultures? (e.g., construction, clothing, agricultural tools and methods, computers). What are some examples of simple machines?
Essential Knowledge	 Machines help us do work. The six simple machines are lever, pulley, wheel and axle, screw, inclined plane and wedge. Mechanical, electrical, magnetic, friction and gravity are forces that can affect the motion of an object. Heavy objects require more force to move than lighter objects. Sliding, rolling and fluid friction are resistant forces. Inventors and scientists play an important role in finding technological solutions.
Vocabulary	 <u>Terms</u>: work, distance, force, motion, load, resistance, technology, inventor, invention <u>Forces</u>: energy, mechanical, electrical, magnetic, friction (sliding, rolling, fluid), gravity, inertia <u>Simple Machines</u>: lever, pulley, wheel and axle, screw, inclined plane, wedge
Essential Skills	 Identify various types of forces (mechanical, electrical, magnetic, friction, gravity). Recognize different types of resistant forces (weight and friction). Create a table or graph to demonstrate how a simple machine can make work easier. Create a machine designed to solve a problem. Evaluate and present the effectiveness of the process and the product. Predict and use measurement to determine how distance is affected by size, weight, and speed.

Science		
Unit 3: Force and Motion		

	Science
	A. Unifying Themes
	A3.Constancy and Change
	Students identify and represent basic patterns of change in the
	physical setting, the living environment, and the technological
	world.
	b. Make tables or graphs to represent changes.
	A4.Scale
	Students use mathematics to describe scale for man-made and
	natural things.
	 Measure things to compare sizes, speeds, times, distances, and weights.
	B. The Skills and Traits of Scientific Inquiry and Technological Design
	B2.Skills and Traits of Technological Design
	Students use a design process, simple tools, and a variety of
Deleted	materials to solve a problem or create a product, recognizing
Related	the constraints that need to be considered.
Maine Learning	a. Identify and explain a simple design problem and a solution
Results	related to the problem.
	 Propose a solution to a design problem that recognizes
	constraints including cost, materials, time, space, and
	safety.
	c. Use appropriate tools, materials, safe techniques, and
	quantitative measurements to implement a proposed
	solution to a design problem.
	d. Balance simple constraints in carrying out a proposed
	solution to a design problem.
	e. Evaluate their own design results, as well as those of others,
	using established criteria.
	f. Modify designs based on results of evaluations.
	g. Present the design problem, process, and design or solution
	using oral, written, and/or pictorial means of communication.
	C. The Scientific and Technological Enterprise
	C2.Understandings About Science and Technology
	Students describe why people use science and technology and
	how scientists and engineers work.
	b. Describe how engineers seek solutions to problems through
	the design and production of products.

Science		
Unit 3: Force and Motion	Ì	

	D. The Physical Setting
	D4.Force and Motion
	Students summarize how various forces affect the motion of
Related	objects.
Maine Learning	a. Predict the effect of a given force on the motion of an object.
Results	b. Describe how fast things move by how long it takes them to
	go a certain distance.
	d. Give examples of how gravity, magnets, and electrically
	charged materials push and pull objects.
	 Locate examples of simple machines in the real world.
Sample	 Design an experiment to show how force affects motion (ex. a
Lessons	block sliding over sandpaper vs. a smooth surface).
And	 Select a scientist and describe how he/she used a simple machine
Activities	to contribute to our society.
	Create a simple machine.
Sample	Make a diagram showing how force can change the motion of an
Classroom	object.
Assessment	 Design, plan and build an invention that helps solve a problem.
Methods	
	Publications:
	 <u>Gear Up</u> - Keith Good
	 Inclined Planes and Wedges - Sally Walker
	 Machines and How they Work - Harvey Weiss
	 <u>Movement</u> - Brenda Walpole
	 <u>Pulleys</u> - Sally Walker
	 Simple Machines - Deborah Hodge
Sample	 <u>Simple Machines</u> - Anne Horvatic
Resources	 Simple Machines - Fran Whittle
	 So You Think You Want To Be An Inventor - Judith St.
	George
	 Wheels and Axles - Sally Walker
	Videos:
	 <u>All About Simple Machines</u>
	 Friction and Simple Machines
	 Simple Machines a First Look