Brandon Valley School District Science Scope and Sequence Grade: 5

Quarter 1

Timeline	Standard(s)
(month/days)	
4 Weeks	Plants Unit
	5-LS1-1 Support an argument that plants get the materials they need for growth
	chiefly from air and water.
2 Weeks	Biomes, Ecosystems, and Energy Unit
	5-PS3-1 Use models to describe that energy in animals' food (used for body repair,
	growth, motion, and to maintain body warmth) was once energy from the sun.
2 Weeks	Biomes, Ecosystems, and Energy Unit
	5-LS2-1 Develop a model to describe the movement of matter and energy among
	producers, consumers, decomposers, and the environment.
1 week	Plants Unit
	5-PS3-1 Analyze and interpret data to provide evidence that plants and animals
	have traits inherited from their parents and that variations of these traits exist in a
	group of similar organisms

Quarter 2

Timeline	Standard(s)
(month/days)	
2 Weeks	Biomes, Ecosystems, and Energy Unit
	5-LS2-1 Develop a model to describe the movement of matter and energy among
	producers, consumers, decomposers, and the environment.
3 weeks	Spheres Unit
	5-ESS2-1 Develop a model to describe the interactions of geosphere, biosphere,
	hydrosphere, and/or atmosphere.
1 week	Spheres Unit
	5-ESS3-1 Obtain and combine information about ways individual communities use
	science ideas to protect the Earth's resources and environment.
2 weeks	Engineering and STEM Unit
	3-5-ETS1-1 Define a simple design problem reflecting a need or a want that
	includes specified criteria for success and constraints on materials, time, or cost
	3-5-ETS 1-2 Generate and compare multiple possible solutions to a problem based
	on how well each is likely to meet the criteria and constraints of the problem.
	5-PS2-1 Support an argument that the gravitational force exerted by Earth on
	objects is directed down.

Quarter 3

Timeline	Standard(s)
(month/days)	

4 Weeks	Space Unit I
	5-ESS1-2 Represent data in graphical displays to reveal patterns of daily changes
	in length and direction of shadows, day and night, and the seasonal appearance of
	some stars in the night sky.
1 Week	Space Unit II
	5-ESS1-1 Support an argument that differences in the apparent brightness of the
	sun compared to other stars is due to distances from the Earth.
2 Weeks	Water/Conservation Unit
	5-ESS2-2 Describe and graph the amounts and percentages of water and fresh
	water in various reservoirs to provide evidence about the distribution of water on
	Earth.
	5-ESS3-1 Obtain and combine information about ways individual communities use
	science ideas to protect the Earth's resources and environment.
2 Weeks	Matter Unit
	5-PS1-3 Make observations and measurements to identify materials based on their
	properties.

Quarter 4	-
-----------	---

Timeline	Standard(s)
(month/days)	
2 Weeks	Matter Unit
	5-PS1-1 Develop a model to describe that matter is made of particles too small to
	be seen.
1 Week	Matter Unit
	5-PS1-2 Measure and graph quantities to provide evidence that regardless of the
	type of change that occurs when heating, cooling, or mixing substances, the total
	weight of matter is conserved.
2 Weeks	Matter Unit
	5-PS1-4 Conduct an investigation to determine whether the mixing of two or more
	substances results in new substances.
1 Week	REVIEW FOR TESTING!
1 Week	STATE TESTING!
2 Weeks	Engineering and STEM Unit - End-of-year STEM projects
	3-5-ETS1-1 Define a simple design problem reflecting a need or a want that
	includes specified criteria for success and constraints on materials, time, or cost.
	3-5-ETS1-2 Generate and compare multiple possible solutions to a problem
	based on how well each is likely to meet the criteria and constraints of the
	problem.
	3-5-ETS1-3 Plan and carry out fair tests in which variables are controlled and
	failure points are considered to identify aspects of a model or prototype that can
	be improved.
WOULD STATE V	allow assessmenting. Crosse assessments

*Pink-priority, Yellow-supporting, Green-supplementary. *60 minute class periods (every day)

Notes Q1 (common curriculum materials - vendor/pg number, common assessments, common intervention/enrichment activities, other)

- Plants Unit
 - Mystery Science: Mystery 2: What do plants eat? Mystery 3: Where do leaves fall?
 - Gizmos: Photosynthesis, Parts of the Flower, Germination
 - Photosynthesis stations/Webquests
- Biomes, Ecosystems, and Energy Unit
 - Mystery Science: Mystery Science 1: Why would a hawk move to NY? Mystery Science 4: Do worms really eat dirt? Mystery Science 5: Why do you have to clean a fish tank? Mystery Science 6: Why did the dinosaurs go extinct?
 - o Gizmos: Food Chains, Forest Ecosystem, Prairie Ecosystem
 - Biome Box/Google Slide presentations
 - Human Impact on Ecosystems STEM
 - Disney Nature "Earth"/ Handout and follow along

Notes Q2

- Continue Biomes, Ecosystem, and Energy Unit
- <u>Spheres Unit</u>
 - *Gizmos: Earthquakes, Volcanoes, Pangea, Plate Tectonics
 - *Spheres Interaction project
- Engineering and Stem Unit
 - Simple Machine Elf Trap Projects

Notes Q3

- Space Unit
 - Mystery Science: Mystery Science 1: Why does the sun rise and set? Mystery Science 2: Who set the first clock? Mystery Science 3: How can the sun tell you the season? Mystery Science 4: Why do the stars change with the seasons? Mystery Science 5: Why does the moon change shape? Mystery Science 6: What are the wandering stars? Mystery Science 7: Why is gravity different on other planets? Mystery Science 8: Could there be life on other planets?
 - Gizmos: Phases of the Moon, Eclipse, Seasons Why do we have them?
 - Planet Google Slide project
- Water and Conservation Unit
 - Mystery Science: How much water is in the world? When you turn on the faucet, where does the water come from? Can we make it rain? How can you save a town from a hurricane?
 - Gizmos: Water cycle, Pond Ecosystem
 - Water Pollution STEM activity, Water Test
- <u>Matter</u>
 - \circ Intro to matter, see Q4

Notes Q4

- <u>Matter Unit</u>
 - Mystery Science: Are magic potions real? Could you transform something worthless into gold? What would happen if you drank a glass of acid? What do fireworks, rubber, and silly putty have in common? Why do some things explode?
 - Gizmos: Chemical Changes, Density
 - Properties of Matter Stations
- Engineering and Stem Unit
 - Gizmos: (coding) Programmable Rover
 - Flooding STEM unit
 - Solar Cars
 - STEM Olympics