Review 2-1/2-4

1. The first three members of a sequence are shown. How many dots are in the fourth member of the sequence?

n=1 n=2 n=3

2. Write the next two numbers in the pattern. Describe the pattern.

2, 10, 50, 250, ____, ___ Describe: _____

3. Write the next two numbers in the pattern. Describe the pattern.

1, 3, 6, 10, ____, ___Describe: _____

4. Show the conjecture is false by finding a counterexample.

If the product of two numbers is positive, then the two numbers must be positive.

5. Show the conjecture is false by finding a counterexample.

If $x \le 6$, then x < 4.

6. Write the following statement as a conditional: All football players have a helmet.

8.	. Write the following statements as a biconditional: If an angle is acute, then its measure is $0^{\circ} < m < 90^{\circ}$. angles measure is $0^{\circ} < m < 90^{\circ}$, then it is an acute angle.					
	If a polygon is a hexagon, then it has six sides. (T or F)					
	If a polygon is a hexagon, then it has six sides. (T or F) converse:	(T or F)				
	converse:	(T or F)				
	inverse:	(T or F)				
	converse:	(T or F)				
	converse:	(T or F)				
	converse: inverse: contrapositve: If $x + 3 > 7$, then $x = 8$. (T or F) converse: inverse:	(T or F) (T or F) (T or F) (T or F)				
	converse:	(T or F) (T or F) (T or F)				
	converse: inverse: contrapositve: If $x + 3 > 7$, then $x = 8$. (T or F) converse: inverse:	(T or F) (T or F) (T or F) (T or F)				
	converse: inverse: contrapositve: If $x + 3 > 7$, then $x = 8$. (T or F) converse: inverse:	(T or F) (T or F) (T or F) (T or F)				
	converse: inverse: contrapositve: If $x + 3 > 7$, then $x = 8$. (T or F) converse: inverse:	(T or F) (T or F) (T or F) (T or F)				
	converse: inverse: contrapositve: If $x + 3 > 7$, then $x = 8$. (T or F) converse: inverse:	(T or F) (T or F) (T or F) (T or F)				

11	Make a	valid con	clusion in	thes	ituation
11.	make a	vana con	Clusion in	i ine s	nuation.

If x > 5, then x + 7 > 11. The value of x is 8.

12. Make a valid conclusion in the situation.

If the game goes into overtime, then Joe will get home late. The game went into overtime.

13. Make a valid conclusion in the situation.

If the game goes into overtime, then Joe will get home late. Joe got home late.

14. Make a valid conclusion in the situation.

If you run cross country, then you get exercise. If you get exercise, then you will be healthy.

15. Make a valid conclusion in the situation.

If y = 0, then 2y = 0. If 2y = 0, then 2y - 5 = -5.

September 19, 2016		