Geometry Mid-Term Review 2013-14

Question 1.

Use the diagram to complete the statement.

Two intersecting lines that are perpendicular to each other create four _____ angles.

- A. 45°
- B. 90°
- C. 180°
- D. 360°

Question 2.

Which word describes lines that never intersect?

- A. Perpendicular
- B. Vertical
- C. Parallel
- D. Acute

Question 3.

A segment is a geometric figure that consists of

- A. two intersecting lines
- B. a number between 0 and 360
- C. two rays with a common endpoint
- D. two distinct points and all the points between them

Question 4.

Alyssa has written the following proof.

Which of the following would correctly complete Statement 6?

- A. SSS
- B. SAS
- C. ASA
- D. AAS

Question 5.

Triangles MNO and RST are shown.

Which theorem could be used to prove that Δ MNO $\approx \Delta$ RST

- A. Angle-Side-Angle (ASA)
- B. Side-Angle-Side (SAS)
- C. Side-Side-Angle (SSA)
- D. Side-Side-Side (SSS)

Question 6.

Lines a and b are parallel and $\angle 6 \approx \angle 7$ and $\angle 9 \approx \angle 10$.

- A. $\angle 3$ and $\angle 8$
- B. $\angle 6$ and $\angle 3$
- C. $\angle 6$ and $\angle 10$
- D. \angle 10 and \angle 8

Question 7.

What is the midpoint of the line segment that contains (-2, 3) and (1, -4)?

- A. $\left(-\frac{5}{2}, \frac{5}{2}\right)$
- B. $\left(-\frac{3}{2}, \frac{7}{2}\right)$
- $C.\left(-\frac{1}{2}, -\frac{1}{2}\right)$
- D. $(\frac{1}{2}, -\frac{3}{2})$

Question 8.

What are two lines that intersect to form right angles called?

- A. oblique
- B. parallel
- C. perpendicular
- D. skew

Question 9.

The slopes of the lines in the graph below can best be described by which term or phrase?

- A. equal
- B. opposites
- C. reciprocals
- D. opposite reciprocals

Question 10.

A triangle is shown below.

Which triangle is congruent to this triangle?

Question 11.

Triangle *GHI* is congruent to Triangle *JKL*.

What is the measure of Angle *L*?

- A. 44°
- B. 52°
- C. 128°
- D. 232°

Question 12.

Ben wants to prove that in the figure shown, $\triangle PQT$ is congruent to $\triangle RQS$ by the Side-Side-Side Postulate.

In Ben's proof, which statement would give the justification to show the triangles are congruent?

- A PT≈RS
- B. Vertical angles are congruent
- C. Alternate interior angles are congruent
- D. ∠P ≈ ∠R

Question 13.

What is the slope of a line that is perpendicular to the graph of $y = \frac{1}{2}x + 9$?

- A. 2
- B. $\frac{1}{2}$
- C. $-\frac{1}{2}$
- D. -2

Question 14.

The midsegment of the triangle is shown below.

Find X, Y and Z.

Answer on a separate sheet

Question 15.

 Δ MXD $\cong \Delta$ _____ by ____

Answer on a separate sheet

Question 16.

Triangles MNO and RST are shown.

Which theorem could be used to prove that Δ MNO $\approx \Delta$ RST

- A. Angle-Side-Angle (ASA)
- B. Side-Angle-Side (SAS)
- C. Side-Side-Angle (SSA)
- D. Side-Side (SSS)

Question 17.

Find the midpoint coordinates of KM.

Answer on a separate sheet

Question 18.

Above is triangle XYZ. Please complete the following:

- A. What is the measure of x. Please show work.
- B. What is the measure of each angle?

C. What kind of triangle is it? (isosceles, scalene, equilateral). Explain your solution.

Answer on a separate sheet

Question 19.

Find the value of y.

Answer on a separate sheet