	Name: key	Date: 12/18/2015	Geometry – Semester Test
(1)	1) Fill in the blanks for calculating	the slope of a line given two po $m = \frac{\sqrt{2} - y_1}{x_2 - x_1}$	ints: (x_1, y_1) and (x_2, y_2) .
(1)	2) If two angles are complementary		<u>9°</u> .
(4)	3) You have $\angle ABC$ with T on the is a) Draw a picture for this scenario b) If $m \angle ABC = 45^{\circ}$, $m \angle ABT = (30^{\circ})$ is the angle bisector of $\angle ABC = 45^{\circ}$.	$(2x)^{\circ}$, and $m \angle CBT = (3x + 5)^{\circ}$ $(3x + 5)^{\circ}$ $(3x + 5)^{\circ}$ $(3x + 5)^{\circ}$ $(3x + 5)^{\circ}$	$BC = 60^{\circ}$, what is $m \angle CBT$?
(1)	4) Bisector means to(u+	in half.	X=10 30;
(2)	5) Define an angle and state its uni	ts. ve a common end point	t, degrees
(3)	6) Find the supplemental angle for a) 67° 113° b) x° 180	each of the following:	
3)	Plane C Name A Segment D A poi	rt of a line that consists of 2 point surface that has no thickness ares a location, has no size, represent at one end of a segment or rays that have a common endpoint	nd extends forever. ented by a dot. y.
2	8) From the picture on the right, fill in the following chart.	Name Notation Ray $\nearrow X$ Point Y Segment $\nearrow W$	Z W A
~ ·	9) Find the area of the following sh	napes:	
6)	a) (00, 3cm²	b) 5m	70m²
(3) (1)	10) A circle has a diameter of 20. a) What is the area of the circle? (cwn ≈ 314) 11) Given: 2, 3, 6, 18, What is the next term in the sequent	b) What is the circumference 2のて そ 62.8 nce?	e? c) What is the radius?

	12) Given, If you bring me a gookin then you w	ill need this test			
(12) Given: If you bring me a cookie, then you will pass this test.				
(5)	a) What is the hypothesis? b) What is the con				
	c) State the converse: If pass, then cookie				
	d) State the inverse: If no cookie, then t	-a./.			
	e) State the contrapositive:	and I			
	e) State the contrapositive: If the fail, the	y pro cookie,			
	10) 77 1.1 17 1 1 1 1 1 1 1 1 1 1	AND A STATE OF THE			
(2)	13) Find the distance between the following point	its AND the midpoints. Write your answers in			
(\mathcal{Z})	the simplest form. $\mathcal{M}(\frac{3}{2}, -1)$	d=q			
	a) $(1,-2) \& (2,0)$ $d = \sqrt{5}$	b) (-4,7) & (-4,-2)			
	d=15	b) $(-4,7)$ & $(-4,-2)$ $M(-4, \frac{5}{2})$			
	14) Solve the following equation and justify each				
		3) = 10			
(2)	•				
	Statements	Reasons			
	· ***	A A A			
	15) Solve for the variable in the given problems:	7			
0	۵)	200100			
16	"/ 3.12	b) (3x + 5) (C) 15)			
	$\frac{4z^{\circ}}{(3z+6)^{\circ}} \stackrel{\geq}{=} 1Z$	$B = (6x - 16)^{\circ}$			
	(32 + 6)	V-14			
		$\Lambda - U_{\star}$			
(h	16) You have line segment AB with C between A	A and B. $m\angle ABC = 8x^{\circ}$			
シ	a) AB is 6 ft long and C is the midpoint of AB.	What is the length of AC? 44.			
ruc	(h) AB is $2x + 10$, AC is $x + 2$ and BC is $5x$. W	hat is the length of AB? $X=Q$ $A \circ A \circ A$			
	c) AB is $14 - x$ long, C is the midpoint of AB, a				
(19)	to AD is 14 x long, c is the interpoint of AD, t	x=2 (6)			
_	17) Change A 7 D V C V A No. C	194 - 194 -			
(2)	17) Given: A, Z, B, Y, C, X., . 0, W, E				
	What is the next 3 terms in the pattern?				
		1/2 3/4			
<u></u>	Use the following picture to answer the question	s 18 and 19. $5/6 7/8$			
(B)	18) Find the missing angles given the following	information.			
(3)		60°, <i>m</i> ∠8 =? ^p ^q			
		description using the nieture from above			
6.1	19) Match the following angles with their proper				
(4)	£ ∠1 and ∠3	Alternate Interior Angles A			
\circ	$\angle 2$ and $\angle 3$	Alternate Exterior Angles B			
	$\rho \ \angle 5 \text{ and } \angle 4$	Same-side Interior angles <i>⊂</i>			
	B 11 and 14	Same-side Exterior angles <i>O</i>			
	0 21 mid 21	Corresponding Angles			
	£ Zo and ZS				
	g ∠1 and ∠8	Vertical Angles			
	\cancel{A} $\angle 2$ and $\angle 7$	None of these G			
	C ∠6 and ∠7				
	20) Given the following pairs of points, calculate	e the slope of the line that passes through them			
(1)	20) Often the following pand of points, dated at	a) E(2.7) E(4.11)			
(0)	(a) $A(1,0)$; $B(0,-2)$	C) E(2,7), F(4,11)			
	M====2	$M = \frac{1}{2} = 2$			
	21) For the above lines $(\overrightarrow{AB}, \overrightarrow{CD}, \text{ and } \overrightarrow{EF})$, which	c) $E(2,7), F(4,11)$ $ M = \frac{3}{2} = 2 $ 1 lines are parallel and which are perpendicular?			
_	There may by more than one that are parallel/ne	rpendicular.			
0	There may by more than one that are parallel/per	→			
	TENEF AB	LED AEFICO			
		n L! + CV			

1/28/2015

- 3)1) a) Using the picture on the right, solve for x, y, and z.
 - b) Classify the following triangles by their angles:

$$\triangle ABC, \triangle ABD, \triangle BCD$$

Match the following transformations with their descriptions.

$$\begin{array}{c}
\underline{\mathcal{B}} \quad (x,y) \to (x-4,y) \\
\underline{\mathcal{E}} \quad (x,y) \to (4x,4y) \\
\underline{\mathcal{D}} \quad (x,y) \to (-x,y) \\
\underline{\mathcal{C}} \quad (x,y) \to (-y,x) \\
\underline{\mathcal{A}} \quad (x,y) \to (x,-y)
\end{array}$$

 $p:(x,y)\to(x,y-4)$

- A) Reflection across the x-axis
- B) Shift left by 4
- C) Rotation clockwise 90°
- D) Reflection across the y-axis
- E) Dilation by a factor of 4
- F) Shift up by 4 down
- (3) 3) Answer the questions about the following figure.

$$3x + y = 8x + 18 + 6x + y$$
$$6x = 18$$

x = 3

A) What is $m \angle KLM$?

640

- B) What is $m \angle M$?
- 4) The angles of a specific triangle are in a ratio of 3:7:8. What are the angles?

5) Use the point (1, 1) as the starting point and perform the following consecutive transformations on it.

c)
$$(-x, -y)$$

$$\rightarrow \qquad (-y$$

6) Suppose $\triangle BRD \cong \triangle JUS$. Complete the following.

a) $\angle J \cong \angle B$.

b) $\underline{\qquad}$

c)
$$JS = BD$$

d)
$$\triangle DBR \cong \triangle 55V$$

7) Given: $\Delta TUV \cong \Delta TWV$. Find $m \angle U$ and UV.

$$(9x - 6)^{\circ} \qquad 6y + 5$$

$$(7x + 22)^{\circ} \qquad 5y + 7$$

$$2x = 28$$

Complete the statement $\triangle ABC \cong$ for each.

a)
$$A(-3,3), B(2,3), C(0,5)$$

 $E(-1,1), D(1,-3), F(-1,-6) \leq F D$

b)
$$A(2,1), B(-3,1), C(-3,3)$$

 $F(2,-3), E(4,-3), D(4,-8)$

(9) a) What is the only transformation that changes the size or shape of an object/picture? dilation

b) There were two important theorems we talked about for sect 4.3. 1) The _______ angle theorem states that the ______ angle is equal to the sum of the two remote interior angles. 2) The ______ angle theorem states that if two angles of one triangle are equal to two angles of another triangle, then the ______ angles are also equal.

10) $\Delta MNP \cong \Delta RST$. What are x and y?

$$\chi = 27$$

Name: Key	
Geometry Test 5 2/23/2016	
1) For the steps of dividing fractions, fill in the fo	ollowing blanks.
1) Get everything in <u>fraction</u> form 2) <u>Reciprocute</u> the fraction <u>after</u> 3) Multiply as <u>Mornal</u> a) Factor the numerators and denor b) Cross off things that are on both c) Multiply the <u>tefs</u> and the <u>b</u>	the division sign. minators the <u>top</u> and bottom.
2) For the steps of adding and subtracting fraction 1) Get everything in <u>fraction</u> form 2) Find a <u>comman</u> <u>fenoming for</u> -Multiply the top and bottom by what is a subtract the <u>fres</u> as normal. 4) <u>Simplify</u> the fraction.	m.
3) Add/subtract the following fractions. a) $\frac{3}{5} - \frac{7}{5} = -\frac{4}{5}$ c) $\cancel{9} \frac{\cancel{3}}{\cancel{7}} - \cancel{\cancel{5}} \frac{\cancel{3}}{\cancel{7}} + \frac{4}{7} + \frac{2}{7}$	b) $\frac{1}{5} - \frac{3}{5} + \frac{2}{5} + \frac{4}{5}$
	d) $\frac{1}{8} - \cancel{2} \frac{3}{8} + \cancel{4} \frac{5}{8}$ $2\frac{3}{\cancel{8}}$
4) Add/subtract the following fractions. a) $\frac{1}{24} - \frac{3}{18} \cdot \frac{9}{4} = \frac{7}{72}$ $29 = 2^{\frac{1}{2}} \cdot \frac{3}{2}$ $2^{\frac{1}{2}} - \frac{3}{18} \cdot \frac{9}{4} = \frac{7}{72}$ $2^{\frac{1}{2}} - \frac{2}{3} \cdot \frac{2}{3}$	$ \frac{8}{5} \cdot \frac{2}{6} - \frac{3}{16} \cdot \frac{7}{7} \qquad \frac{2}{7} \cdot \frac{9}{18} $ $ \frac{2}{2} \cdot \frac{7}{16} \cdot \frac{2}{7} \qquad \frac{2}{2} \cdot \frac{3}{7} $ $ \frac{2}{7} \cdot \frac{3}{7} \cdot \frac{7}{2} \cdot \frac{3}{7} \qquad \frac{2}{2} \cdot \frac{3}{7} $ $ \frac{2}{7} \cdot \frac{13}{2} \cdot \frac{3}{7} $ $ \frac{2}{7} \cdot \frac{13}{7} \cdot \frac{3}{2} \cdot \frac{3}{7} $ $ \frac{2}{7} \cdot \frac{13}{7} \cdot \frac{3}{7} $ following. $ \frac{2}{5} \cdot \frac{7}{7} \cdot \frac{13}{7} \cdot \frac{3}{7} $ $ \frac{2}{7} \cdot \frac{13}{7} \cdot \frac{3}{7} $ following. $ \frac{2}{5} \cdot \frac{7}{7} \cdot \frac{13}{7} \cdot \frac{3}{7} $
c) . 125 1/8/ 6) Multiply the following fractions.	d).5 ½.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7) Divide the following fractions. (a) $\frac{744}{4} \div \frac{18}{20} \times 9$ (c) $\frac{3}{4} \div \frac{18}{20} \times 3$ (d) $\frac{3}{4} \div \frac{18}{20} \times 3$ (e) $\frac{3}{4} \div \frac{18}{20} \times 3$ (f) $\frac{3}{4} \div \frac{18}{20} \times 3$	b) $2\frac{3}{7} \div 1\frac{1}{7}$ $\frac{17}{8}$ $\frac{17}{8}$ $\frac{17}{8}$ $\frac{17}{8}$ $\frac{17}{8}$ $\frac{17}{8}$ $\frac{17}{8}$ $\frac{17}{8}$ $\frac{17}{8}$ $\frac{37}{19}$ $\frac{1}{19}$

8) There ar	e several theor	rems that allow you to pro	ve triangles	are congruent. A) Who	at do their abbreviations
stand for?	B) Put an X thi	rough the one that does no le triangle to represent eac	t work. C) (The abbreviations are:	y work with right
SSS STRIANGLES. I)) Draw a sing.	te triangle to represent each	SAS	The appreviations are.	
מסט	<u> </u>		0710		
SXA			ASA		
			\sim		
AAS			(HL)	- ,	No.
					for a contract of the contract

9) For the following three pictures, state (if any) the theorem/s that would prove the triangles are congruent.

11) Determine if $\triangle KGH$ is similar to $\triangle OLM$. O(-2,4), L(-2,-4), M(4,-4) and K(3,-1), G(-1,-1), H(-1,2). Use the distance formula and proportions to determine this. $\frac{6}{3} = \frac{8}{7} = \frac{10}{5}$

12) The similarity ratio of $\triangle CGL$ to $\triangle MPS$ is $\frac{20}{5}$. What is PS?

LL

13) What value of x ABCD \sim EFGH makes the rectangles similar?

1) Using the triangle on the right and the values given, find all the missing sides and angles in the following chart.

(12)

Given:	α	β	a	Ъ	c
a),	30°	60°	10	17,32	Zo
b)	650	25°	,906	.423	1
c)	55°	350	42.84	30	52,3
d)	800	10°	4	271	4.06

2) Fill in the following table for the angles given.

(3)

$\theta \rightarrow$	a) 35°	b) 60°	c) 45°
$sin(\theta)$,5736	V3/2	V2/2
$\cos(\theta)$.8192	1/2	J2/2
$tan(\theta)$, 7002	<i>V</i> 3	1

3) Fill in the following table.

(3)

$\theta \rightarrow$	a)? 36°	b)? 53°	c)? (2°
$\sin(\theta)$	1/2	.7986	,8829
$cos(\theta)$	J3/2	.6018	:4695
$tan(\theta)$	J3/3	1,327	1.8807

- 4) Use your tables to find the following angles to the nearest degree.
- a)tan-1(21445)
- b) $\sin^{-1}(.5878)$
- c) Arccos(.5878)

(3) 650

5) Write a similarity statement comparing the three triangles on the right.

6) If the ratio between two triangles is: $\frac{1}{3}$.

10 ft

- a) The area of the smaller triangle is: $30in^2$. What is the area of the larger triangle?
- b) The perimeter of the larger triangle is: 30ft. What is the perimeter of the smaller triangle?

$$\frac{1}{q} = \frac{30}{x}$$

$$\frac{1}{3} = \frac{x}{30} \neq x = 10$$

7) Give the definitions of the following trigonometric functions. You may use the abbreviations that I used in class.

$$\sin(\theta) = \frac{o p \rho}{h y \rho}$$

$$\cos(\theta) = \frac{4r_{acl_j}}{hyp}$$

$$tan(\theta) = \frac{off}{adj}$$

8) Find the geometric mean of each pair of numbers. Give your answer in simplest radical form.

a) 66 and 36

b) 35 and 20

9) Use the picture on the right to complete each equation.

a)
$$\frac{x}{z} = \frac{u}{?} \checkmark$$

b)
$$\frac{x+y}{v} = \frac{?}{z} \cdot \bigcup$$

10) Classify each answer as either an angle of elevation or depression.

- 11 elevation
- 42 depression
- 23 depression
- 44 elevation.

Geometry - Test 7 5/3/2016

1) Using the triangle, find the missing values of the triangle for each situation. The picture is clearly not drawn to scale.

						2
Given:	α	β	γ	a	b	С
a)	280	17°	135°	13.6	8.5	20.56
b)	67°	27.30	85.7°	12	5.8	13

$$\chi^2 = 5.8^2 + 13^2 - 2(5.8)(13) \cos(67)$$

2) Find the component form of the vector \overline{AB}

$$A(-6,7)\&B(-1,0)$$

$$A(-6,7)\&B(-1,0)$$
 $\frac{5in(8)}{13} = \frac{sin(67)}{12}$

- 3)
- a) What is the radius of $\bigcirc R$? $\stackrel{?}{\bigcirc}$
- b) What is the diameter of $\bigcirc S$? 4
- c) What is the point of tangency? (1,2)
- d) What is the equation of the line of the tangent? X = I
- e) What is the area of the rectangle containing the two circles? 3>
- f) What is the area of $\bigcirc S$?
- d) What is the area of the region left of the rectangle if the two circles were cut out of it? 32-87 = (6.88)

4) What is the magnitude of the each of the following vectors? Write your answer in the simplest radical form.

a)
$$< 5, -5 >$$

b)
$$< -6, 8 >$$

$$\sqrt{5^2+5^2} = (5\sqrt{2})$$
 $\sqrt{6^2+8^2} = 90$

5) What is the law of sines?

$$\frac{q}{\sin(x)} = \frac{b}{\sin(b)} = \frac{c}{\sin(x)}$$

6) What is the law of cosines?

$$C^2 = a^2 + b^2 - 2ab\cos(3)$$

- 7) Using the circle on the right, identify the following lines and segments.
- a) DE rudius
- b) line 1 secant.
- c) FE diameter
- d) line m +argent.
- 8) Find each vector sum.
- a) < 0, -1 > + < 7, -8 > < 7, -97
- b) < 9,10 > +< -3,3 > ∠6,13 >

9) Find a vector in component form for the following:

Magnitude 20 and direction 60°

< 10 ,17.3 >

10) \overline{JK} and \overline{JL} are tangent to \bigcirc C. What is JK?

$$4x-1=2x+9$$

$$2x=\omega$$

$$(x=5)$$

11) Find the following measures:

- a) CF 70
- b) EF 98

12) Find the following measures:

- b) mMP 152°
- c) mQML 2080

14) Find the area of sector RST

$$\frac{47}{30}\pi(2)^2 = (1.64)$$

15) Find the area of the segment.

$$= \frac{45}{360} \pi (10)^2 - \frac{1}{2} 10.10.5 m (45)$$

$$= \frac{45}{360} \pi (10)^2 - \frac{1}{2} 10.10$$

$$= \frac{3.89}{m^2}$$

$$= 28.5 m^2$$

$$= \frac{90}{360} \pi (10)^{2} - \frac{1}{2} 10.10$$

$$= 28.5 m^{2}$$
A 10 m
45°

Name:_	Key	
1/8/2016	/	

Geometry Quiz

- 1) Use the point (-1, 4) as the **STARTING** point **each time** and perform the following transformations
 - a) Shift right 2 (1,4)
 - b) Down 4 (-1, 0)
 - c) Reflect across the x-axis (-1,-4)
 - d) Rotate clockwise 90°
 - 2) Match the following transformations with their descriptions.

$$\begin{array}{c}
\underbrace{D}(x,y) \to (x+2,y) \\
\underline{C}(x,y) \to (2x,2y) \\
\underline{B}(x,y) \to (-x,y) \\
\underline{F}(x,y) \to (-y,x) \\
\underline{A}(x,y) \to (x,-y)
\end{array}$$

- A) Reflection across the x-axis
- B) Reflection across the y-axis
- C) Dilation by a factor of 2
- D) Shift right by 2
- E) Rotation clockwise 90°
- 3) Use the point (2, 3) as the starting point and perform the following consecutive transformations on it.

object/picture?

3)	Name: $1/22/2016$ Geometry Quiz $38^0 36^0 Qo^0$ 1) a) Using the picture on the right, solve for x, y, and z. b) Classify the following triangles by their angles: $\Delta ABC, \Delta ABD, \Delta BCD$ C
2)	2) There were two important theorems we talked about for sect 4.3. 1) The angle theorem states that theext angle is equal to the sum of the two remote interior angles. 2) The angle theorem states that if two angles of one triangle are equal to two angles of another triangle, then the angles are also equal.
(3) (3)	3) Given the following triangle, solve for $m \angle XYZ = 162^{\circ}$. $15x-18 = 5x + 8x + 6$ $2x = 24$ $x = 12$ 4) The angles of a specific triangle are in a ratio of 1:2:3. What are the angles? $30, 60, 60, 60$
3)	 5) Classify each of the following triangles by both their angles and their sides. a) ΔADC right 150 b) ΔBCD obtuse, Scalene chase, iso.

	Name: Key
	2/5/2016
	Geometry Quiz
	1) There are several theore
1	abbreviations stand for? B)
p.	work with right triangles. I
	SSS -> side-side-side
	SSA - side-side-angl
	/

Put an X through the one that does not work. C) Circle the ones that only D) Draw a single triangle to represent each theorem. The abbreviations are: SAS -> stae-angle-side.

- 2) The Isosceles Triangle Theorem can be said two ways. 1) If two angles of a triangle are equal, then the <u>opp.</u> sides are also <u>equel</u>. 2) If two sides of a triangle are equal, then the <u>opp.</u> angles are also <u>equal</u>.
 - 3) For the following three pictures, state (if any) the theorem/s that would prove the triangles are congruent.

HL.

none

4) Find "x" in the following pictures.

5) The Hatfield and McCoy families are feuding over some land. Neither family will be satisfied unless the two triangular fields are exactly the same size. You know) that C is the midpoint of each of the intersecting segments. On the back, write a two-column proof that will settle the dispute.

Given: C is the midpoint of AD and BE.

Prove: $\triangle ABC \cong \triangle DEC$

Name: Key 2/12/2016

Geometry Quiz

1) Write the decimal/fractional equivalence of the following.

a)
$$\frac{1}{4} = .25$$

b)
$$\frac{1}{3} = .3$$

d) $.375 = \frac{3}{8}$

c)
$$\frac{1}{125} = \frac{1}{8}$$

- 2) The Isosceles Triangle Theorem can be said two ways. 1) If two angles of a triangle are equal, then the opp sides are also = . 2) If two sides of a triangle are equal, then the angles are also = .
- 3) Multiply/divide the following fractions.

a)
$$\frac{4}{14} * \frac{20}{18} = \frac{20}{67}$$

b)
$$\frac{4}{9} \div \frac{12}{18}$$
 $\frac{1}{9} \cdot \frac{1}{12} \cdot \frac{1}{12} = \frac{2}{3}$

4) Find "x" in the following pictures.

$$4x - 6 = 18$$

 $4x = 24$

5) Add/subtraction the following fractions.
$$x = 6$$

a) $\frac{73}{128} + \frac{5}{12.7}$ = $\frac{44}{24}$ = $\frac{11}{21}$

b) $\frac{7}{12} - \frac{3.3}{16.3} = \frac{4}{48}$ = $\frac{11}{21}$
 $\frac{28 = 2}{12 = 2}$

$$28 = 2^{2}.7$$

$$12 = 2^{2}.3$$

$$2^{2}.3.7$$

6) Solve the following proportions.
a)
$$\frac{16.5}{x} = \frac{132}{84}$$
 $\chi = \underbrace{16.5 \cdot 8\%}_{132}$

b)
$$\frac{35}{20} = \frac{13-x}{28}$$
 13 - $\frac{35.28}{20} = \chi$

Name: Key

Geometry Quiz

1) Given the triangles on the right, determine if they are similar. If they $\triangle RSQ$ and $\triangle UXZ$ are, write a similarity statement.

2) Given: $\triangle MNP \sim \triangle XYZ$. Find x.

$$\frac{X+5}{3c} = \frac{4x-10}{75}$$

$$\frac{X+5}{75} = \frac{4x-10}{75}$$

75x75-75 = 120x -300

3) Triangle ABC is transformed into the image EFG. What is the scale factor of ABC to EFG? A(4,8), B(0,4), C(4,0) and E(3,6), F(0,3), G(3,0)

$$\frac{\sqrt{32}}{\sqrt{18}} = \begin{pmatrix} 9 \\ 5 \end{pmatrix}$$

4) Fill in the blanks for the distance formula: $\sqrt{(y_2 - x_1)^2 + (y_2 - y_1)^2}$

5) Determine if ΔKGH is similar to ΔOLM . O(1,6), L(1,2), M(4,2) and K(2,12), G(2,4), H(8,4).

6) Solve the following proportions.
a)
$$\frac{16.5}{x} = \frac{132}{84}$$
 $\chi = 10.5$

b)
$$\frac{35}{20} = \frac{13-x}{28}$$
 $\chi = -36$

$$CL = \sqrt{16} = 4$$
 $56 = \sqrt{64 + 8}$
 $CM = \sqrt{16 + 9} = 3725$ $KH = \sqrt{64 + 76} = 16$

Name: Kes 3/11/2016

Geometry Quiz

1) Write a similarity statement comparing the three triangles on the right.

2) Use the triangle above to answer the following question. Given: MP = 12 & MQ = 4. What are the measures of: QN, QP, and MQ? $\frac{4}{8\sqrt{2}} = \frac{8\sqrt{2}}{x} \implies \frac{4x = 128}{4}$

4) Use the picture on the right to complete each equation.

a)
$$\frac{x}{z} = \frac{z}{?}$$

b)
$$\frac{x+y}{v} = \frac{v}{?}$$

- 5) If the ratio between two triangles is: $\frac{1}{3}$.
- a) What is the ratio between their perimeters? $\frac{1}{3}$
- b) What is the ratio between their areas? 1
- 6) Jocelynn is 5'2" tall. To find the height of a light pole, she measured her shadow and the pole's shadow. What is the height of the pole?

$$\frac{X}{15.5} = \frac{5.17}{7.75}$$

Name: key

3/18/2016

Geometry Quiz

1) Give the definitions of the following trigonometric functions. You may use the abbreviations that I used in class.

used in class,
$$\sin(\theta) = \frac{of'}{hy/2}$$

$$\cos(\theta) = \frac{aslj}{hyp}$$

$$\tan(\theta) = \inf_{hy \rho.}$$

2) Use the triangle on the right to answer the following questions.

a)
$$\sin A = \frac{?}{5}$$

b) $\cos C = \frac{3}{5}$

c) $\tan A = \frac{3}{4}$

d) $\sin C = \frac{4}{5}$

a)
$$\sin^{-1}\left(\frac{1}{2}\right) = 30^{\circ}$$

b)
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = 30^{\circ}$$

c)
$$tan^{-1}(1) = 45^{c}$$

d)
$$\sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = 45^{-6}$$

$$m \angle C = SE^{0}$$

$$AB = 6.28$$

$$BC = 3.92$$

$$(05(32)=\frac{x}{7.4}$$

- 6) Classify each answer as either an angle of elevation or depression.
- 11 elevation
- 12 depression
- 13 depression
- 14 elevation

Name: 4/8/2016

Geometry Quiz

1) Using the triangle, find the missing values of the triangle for each situation. The picture is clearly not drawn to scale. 10.2

	10,0
•	
-	Sin
	<u>:</u> -

127

					(4,76) × m	virgilac ()
Given:	α	β	γ	Aq	b	C
a)	122°	23.6	34,4	10.2	4.82	6.8
b)	280	17°	135°	13.6	8.5	20,6
(c))	67°	24,2026,40	88.885.7	七子干华/2	5.8	13
d)	78.90	22.2°	78.90	13	5	13

2) Find the component form of the vector \overrightarrow{AB}

(3,

$$A(5,-9)\&B(-2,10)$$
 $\angle -7,19 >$

3) What is the magnitude of the each of the following vectors? Write your answer in the simplest radical form.

a)
$$< 8, 4 >$$

$$(b) < -7, 10 >$$

4) Find each vector sum.

5) Find a vector in component form for the following:

Magnitude 15 and direction 42°

Name: K

Geometry Quiz

1) Using the triangle, find the missing values of the triangle for each situation. The picture is clearly not drawn to scale.

Given:	α	β	γ	a	ь	С
a)	132,07	15.93	32°	78.45	29	56
b)	300	20°	130°	12.43	8.5	19,04
c)	60°	32,54° N	87.39° A	11,27 A	7	13
d)	51.32	77.36	51,32	4 /	5	4
2) What is the law of sines? $\frac{4}{5in(a)} = \frac{6}{5in(a)} = \frac{6}{$						
3) What is the l	law of cosines?	62 - 2ab cos	•	11,2 Sin	$\frac{27}{(6)} = \frac{7}{5in(8)}$)

$$\frac{q}{\sin \alpha} = \frac{b}{\sin(B)} = \frac{C}{\sin(x)}$$

$$C^2 = 9^2 + b^2 - 2ab \cos(8)$$

$$\frac{11.27}{5in(6)} = \frac{7}{5in(8)}$$

4) Find each vector sum.

5) Find a vector in component form for the following:

Magnitude 15 and direction 42°

< 11.1,10.04>

$$\cos(4z) = \frac{x}{15}$$

	L .	
Name:	Key.	
4/22/20	16 '	

Geometry Quiz

- 1) What are the titles of each of the following sections:
- a) Sect 12.1 lines that intersect O
- b) Sect 12.3 Sector Area and Arc length.
- c) Sect 12.5 Angle Relationships in circles
- d) Sect 12.7 circles in the coordinate plane

2) Define the following terms:

- a) Chord = segment whose endpohts lie on a circle.
- b) Sector of a circle = region bounded by 2 radii of the circle and the interseptor
- c) Inscribed angle = ayle whose vertex is on a a and whose sides contain Chards of the circle.
- d) Subtend = as where or are subtends an angle if its endpoints lie on the sides of the angle.
- 3) \overrightarrow{PT} bisects $\angle RPS$. RT = 6x & ST = 20 4x. What is RT?

$$6x = 20 - 4x$$
 (12)
 $10x = 20$ (2)
 $x = 2$.

4) Find the following measures:

a) *CF (70*)

b) *EF* 🗦

- 5) Find the following measures:
- a) m∠LJK 62°
- b) mMP 1570
- c) mQML 208°

6) Find m∠RQS.

1380

