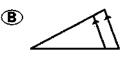
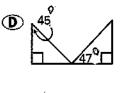

### Standardized Test

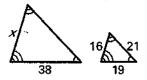
For use after Chapter 6

#### **Multiple Choice**

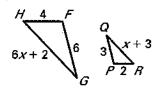

- 1. A rectangle is  $\frac{5}{8}$  as wide as it is long. How wide is the rectangle if it is 10 inches long?
  - **(A)** 8 in.
- **B** 16 in.
- **©**  $5\frac{3}{4}$  in.
- **(D)**  $6\frac{1}{4}$  in.
- 2. Find the geometric mean of 8 and 32.
  - **(A)** 20
- **B** 16
- **©** 24
- **(D)** 12
- 3. One serving of a cookie recipe calls for 6 tablespoons of sugar. If one serving makes enough for 4 people, how much sugar is needed to serve 10 people?
  - (A) 15 Tbs
- **B** 60 Tbs
- © 12 Tbs
- **D** 24 Tbs
- **4.** If the corresponding angles of two polygons are congruent and the corresponding side lengths are proportional, then the two polygons are \_?\_.
  - (A) regular
- B concave
- © similar
- equilateral
- **5.** Given  $\triangle ABC \sim \triangle RST$ , find the perimeter of  $\triangle RST$  if the scale factor of  $\triangle ABC$  to  $\triangle RST$  is  $\frac{3}{2}$ .



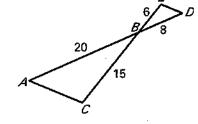

- **(A)** 36
- **B** 81
- **©** 54
- **(D)** 27
- **6.** If two angles of one triangle are congruent to two angles of another triangle, then the triangles are \_?\_.
  - (A) equilateral
- **B** congruent
- © equiangular
- D similar


 Use the Angle-Angle Similarity Postulate to determine which pair of triangles is not similar.

A 50°



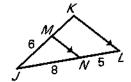




**8.** Find x.

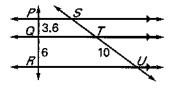


- **(A)** 2
- **B** 32
- **©** 42
- **D** 38
- **9.** If  $\triangle PQR \sim \triangle FGH$ , find QR.



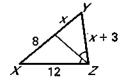

- **(A)**  $\frac{3}{2}$
- **B** 2
- **©** 1
- **①** 3
- **10.** Which Similarity Theorem can be used to show  $\triangle ABC \sim \triangle DBE$ ?
  - A SSS
  - B AA
  - © SAS
  - (D) AAS




- 11. If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides?
  - (A) equally
- B proportionally
- © congruently
- **D** perpendicularly

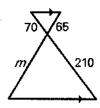
85

- 12. Use the Triangle Proportionality Theorem to find MK.
  - **(A)** 3
  - **B** 3.75
  - **©** 3.5
  - **①** 3.25




**13.** Find *SU*.




- **(A)** 12
- **B** 4
- **©** 6
- **(D)** 16

14. Find YZ.



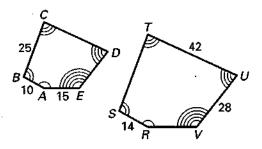
#### **Gridded Answer**

**16.** Find *m*.



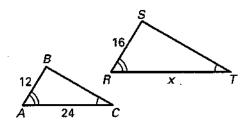
| 73         | Ø        | 0          |          |
|------------|----------|------------|----------|
| $\odot$    | 0        | $\odot$    | 0        |
|            | 0        | 0          | 0        |
| Θ          | 0        | Θ          | 0        |
| ②          | ②        | 3          | <b>②</b> |
| 3          | 3        | 3          | ③        |
| <b>(4)</b> | <b>④</b> | <b>③</b>   | <b>④</b> |
| (3)        | 3        | (3)        | ③        |
| ⊚          | <b>©</b> | <b>⑤</b>   | <b>©</b> |
| 0          | Ø        | <b>(7)</b> | Ø        |
| 3          | 3        | ➂          | ③        |
| 9          | (9)      | <b>(9)</b> | <b>9</b> |

# **SAT/ACT Chapter Test**

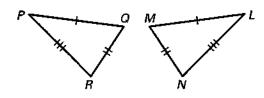

For use after Chapter 6

#### **Multiple Choice**

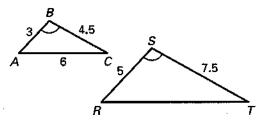
- 1. What is the geometric mean of 5 and 20?
  - (A) 5
- **B** 10
- **©** 15


- **D** 20
- **E** 100
- 2. In  $\triangle XYZ$ , the measures of the angles are in the extended ratio of 2:3:5. What are the measures of the angles?
  - **(A)** 18°, 36°, 54°
- **B** 20°, 21°, 23°
- **©** 36°, 54°, 90°
- **(D)** 36°, 39°, 41°
- **(E**) 54°, 54°, 90°
- 3. An architect has a scale drawing of an addition that is to be added to a house with a scale of 1 inch: 2 feet. If the drawing is 6 inches by 10 inches, how big is the addition to the house going to be?
  - A 6 feet by 10 feet
  - **B** 8 feet by 12 feet
  - © 10 feet by 12 feet
  - 12 feet by 20 feet
  - (E) none of the above

# In Exercises 4 and 5, use the following diagram.



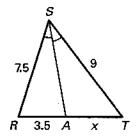

- **4.** What is the length of  $\overline{RV}$ ?
  - **(A)** 21
- **B** 25
- **©** 28
- **D** 29
- **E** 36


- **5.** What is the perimeter of RSTUV?
  - **(A)** 100
- **B** 110
- **©** 120
- **①** 135
- **E** 140
- **6.** What is the value of x?



- **(A)** 15
- **(B)** 18
- **©** 24
- **(D)** 32
- none of the above
- 7. How are the triangles similar?




- (A) AA
- B ASA
- C AAS
- © SSS
- none of the above
- **8.** What is the perimeter of  $\triangle RST$ ?



- **(A)** 13.5
- **B** 14
- **©** 22.5
- **(D)** 36
- **E** 38.5

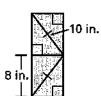
# SAT/ACT Chapter Test continued For use after Chapter 6

**9.** What is the length of  $\overline{RT}$ ?



- **(A)** 4.2
- **B** 7.7
- **©** 8
- **D** 22.5
- **E** 24

### Standardized Test

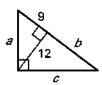

For use after Chapter 7

#### **Multiple Choice**

1. Which equation is not correct?



- **(A)**  $t^2 r^2 = s^2$  **(B)**  $t^2 + r^2 = s^2$
- **©**  $s^2 t^2 = -r^2$  **D**  $t^2 s^2 = r^2$
- 2. A 25-foot ladder leans against a wall 7 feet from the base of the wall. How high up the wall does the ladder touch?
- **A** 24 ft **B** 18 ft **C** 20 ft **D** 21.5 ft
- 3. Find the area of the rectangle.



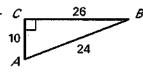

- (A) 192 in.<sup>2</sup>
- **B** 48 in.<sup>2</sup>
- **©** 24 in.<sup>2</sup>
- **(D)** 96 in.<sup>2</sup>
- **4.** If the square of the length of the longest side of a triangle is greater than the sum of the squares of the lengths of the other two sides, then the triangle is ? .
  - (A) equilateral
- **B** a right triangle
- C acute
- none of these
- **5.** Classify  $\triangle ABC$  if the vertices are A(-12, 5), B(12, 5), and C(10, 17).
  - (A) right scalene
- **B** obtuse scalene
- © acute scalene
- **D** none of these
- **6.** Find *x*.



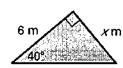
- **(A)**  $4\sqrt{3}$  **(B)**  $2\sqrt{3}$  **(C)**  $3\sqrt{3}$  **(D)**  $5\sqrt{3}$

7. Find a, b, and c.




- **(A)** a = 20, b = 25, c = 15
- **B** a = 15, b = 25, c = 20
- $\mathbf{C}$  a = 15, b = 16, c = 20
- $(\mathbf{\bar{D}})$  a = 16, b = 20, c = 25
- 8. In a 45°-45°-90° triangle, the hypotenuse is \_\_?\_ times as long as each leg.

- **(A)**  $\sqrt{3}$  **(B)**  $\sqrt{2}$  **(C)**  $\frac{\sqrt{2}}{2}$  **(D)**  $\frac{3}{2}$

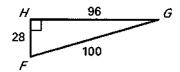

**9.** Find x and y.



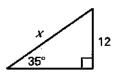
- **(A)** x = 6, y = 12 **(B)**  $x = 12\sqrt{3}, y = 6$
- **©**  $x = 8\sqrt{3}, y = 8$  **(D)** x = 12, y = 6
- **10.** Find  $\tan A$  and  $\tan B$ . C



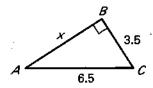
- $\triangle$  tan  $A \approx 0.38$ , tan B = 2.6
- **B**  $\tan A = 2.6, \tan B \approx 0.38$
- $\bigcirc$  tan  $A \approx 1.08$ , tan  $B \approx 0.42$
- **(D)**  $\tan A \approx 0.92$ ,  $\tan B = 2.4$
- 11. Find the approximate area of the triangle.




- (A) 15.1 m<sup>2</sup>
- **(B)**  $5.03 \text{ m}^2$
- (C) 45.3 m<sup>2</sup>
- $\bigcirc$  30.2 m<sup>2</sup>


### Standardized Test

For use after Chapter 7


**12.** Find  $\sin F$  and  $\sin G$ .

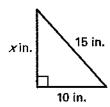


- $\bigcirc$  sin F = 0.28, sin G = 0.96
- **B**  $\sin F \approx 3.57$ ,  $\sin G \approx 1.04$
- $\bigcirc$  sin  $F \approx 1.04$ , sin  $G \approx 3.57$
- $\bigcirc$  sin F = 0.96, sin G = 0.28
- **13.** Which expression could be used to find the value of x in the diagram?



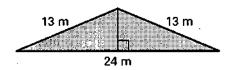
- **B**  $\cos 35^{\circ} = \frac{x}{12}$
- $\bigcirc$  cos 35° =  $\frac{12}{x}$
- $\bigcirc$  cos 55° =  $\frac{x}{12}$
- **14.** Which is *not* enough given information needed to solve a right triangle?
  - A two acute angles and one side length
  - (B) measure of the hypotenuse
  - **©** two side lengths
  - (D) one side length and the measure of one acute angle
- **15.** Find  $m \angle A$ .




- **(A)** 28.3°
- **B** 32.58°
- **©** 57.42°
- **D** 45°

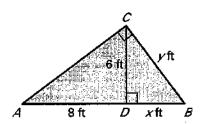
### **SAT/ACT Chapter Test**

For use after Chapter 7


#### **Multiple Choice**

1. What is the value of x? Round your answer to the nearest tenth.




- **(A)** 11.0
- **B** 11.1
- **(C)** 11.2

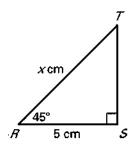
- **(D)** 18.0
- **(E)** 18.1
- 2. What is the area of the triangle to the nearest square meter?



- $\bigcirc$  30 m<sup>2</sup>
- **B** 60 m<sup>2</sup>
- $\bigcirc$  120 m<sup>2</sup>
- **D** 156 m<sup>2</sup>
- **E** 242 m<sup>2</sup>
- **3.** Which of the following is *not* a Pythagorean Triple?
  - **(A)** 3, 4, 5
- **B** 5, 12, 13
- **©** 15, 20, 25
- **(D)** 21, 72, 75
- **E** 25, 45, 51
- 4. Which side lengths form an obtuse triangle?
  - **(A)** 2, 5, 8
- **B** 4, 5, 6
- **©** 17, 18, 19
- **(D)** 28, 96, 100
- **E** 40, 75, 85
- **5.** What type of triangle has side lengths of 10, 28, and 29?
  - (A) acute
- **B** obtuse
- © scalene
- (D) right
- (E) none of the above

# In Exercises 6–8, use the following figure.



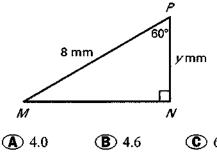

- **6.** What is the value of x?
- **(A)** 4.5
- **B** 7.5
- **©** 10

- **(D)** 10.5
- **(E)** 12.5
- **7.** What is the value of y?
  - **(A)** 4.5
- **B** 7.5
- **©** 10

- **D** 10.5
- **E** 12.5
- **8.** What is the area of  $\triangle ABC$ ?
  - **(A)**  $13.5 \text{ ft}^2$
- **B** 22.5 ft<sup>2</sup>
- **©** 24 ft<sup>2</sup>

- **(D)** 37.5 ft<sup>2</sup>
- **€** 42 ft<sup>2</sup>
- 9. What is the geometric mean of 2 and 32?
  - **(A)** 2
- **B** 6
- **(C)** 8

- **(D)** 16
- **E**) 64
- **10.** What is the value of x? Round your answer to the nearest tenth.

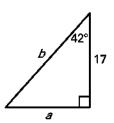



- **(A)** 3.5
- **B** 5.0
- **©** 6.4

- **①** 7.0
- **E** 7.1

#### SAT/ACT Chapter Test continued For use after Chapter 7

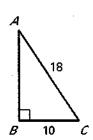
**11.** What is the value of y? Round your answer to the nearest tenth.




**(D)** 6.9

**©** 6.3

- **(E)** 13.9


In Exercises 12 and 13, use the following figure.



- 12. What is the value of a to the nearest tenth?
  - (A) 11.4
- **(B)** 12.6
- **©** 15.3

- **(D)** 18.8
- **(E)** 25.4
- **13.** What is the value of b to the nearest tenth?
  - **A** 12.6
- **B** 15.3
- **©** 16.4

- **(D)** 22.9
- **E** 25.4
- **14.** What is the measure of  $\angle A$  to the nearest degree?



- A) 29°
- **B** 34°
- **©** 56°

- **(D**) 61°
- **(E)** 65°

#### **Gridded Answer**

**15.** Let B be an acute angle in a right triangle. Approximate the measure of B to the nearest tenth of a degree when  $\cos B = 0.2536.$ 

|          | 0        | 0        | 100      |
|----------|----------|----------|----------|
| 0        | 0        | 0        | 0        |
| 1,940    | 0        | 0        | 0        |
| Θ        | Θ        | Θ        | 0        |
| 3        | 2        | 3        | <b>②</b> |
| 3        | 3        | 3        | 3        |
| <b>(</b> | <b>④</b> | <b>④</b> | <b>④</b> |
| <b>③</b> | 3        | ③        | ③        |
| <b>©</b> | <b>©</b> | @        | <b>©</b> |
| 0        | Ø        | Ø        | Ø        |
| ®        | ➂        | ➂        | ➂        |
| <b>9</b> | <b>③</b> | <b>③</b> | 9        |
|          |          |          |          |

16. The angle of elevation from the tip of a flagpole's shadow to the top of the flagpole is 63°. The length of the shadow is about 12 feet. How tall is the flagpole to the nearest tenth of a foot?

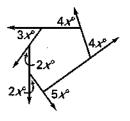
| ,          | 1        |          |          |
|------------|----------|----------|----------|
|            | Ø        | 0        | 811 g    |
| 0          | 6        | 0        | 0        |
|            | 0        | 0        | 0        |
| Θ          | Θ        | 0        | Θ        |
| ②          | 3        | <b>②</b> | 2        |
| 3          | 3        | 3        | 3        |
| <b>④</b>   | <b>④</b> | <b>④</b> | <b>④</b> |
| ➂          | (3)      | 3        | ➂        |
| ⊚          | <b>©</b> | <b>©</b> | ⊚        |
| $\bigcirc$ | Ø        | <b>7</b> | Ø        |
| ⑧          | ➂        | 3        | ➂        |
| 9          | 9        | (9)      | <b>9</b> |

17. Ski lift cables are strung to the top of a 1200-foot mountain. The angle of elevation of the cables is 30°. How long are the cables?

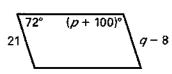
| 0        | 00       | 00       | 0        |
|----------|----------|----------|----------|
| ٠;       | 0        | 0        | 0        |
| 0        | Θ        | <b>①</b> | 0        |
| 2        | @        | 2        | 2        |
| 3        | 3        | 3        | 3        |
| <b>④</b> | <b>④</b> | <b>④</b> | 4        |
| ➂        | <b>③</b> | <b>③</b> | ➂        |
| <u></u>  | 0        | ⓒ        | <b>©</b> |
| Ø        | 9        | Ø        | Ø        |
| ⑧        | ⊚        | ⑧        | ➂        |
| <b>®</b> | 9        | ⑨        | <b>®</b> |

107

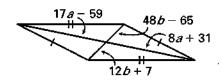
## Standardized Test


For use after Chapter 8

#### **Multiple Choice**

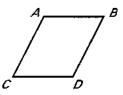

- 1. A segment of a polygon that joins two nonconsecutive vertices is called a \_\_?\_.
  - (A) transversal
- **B** diagonal
- **©** hypotenuse
- **p** geometric mean
- 2. What is the sum of the measures of the interior angles of the figure shown?



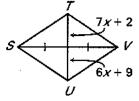

- **A** 900°
- **B** 1260°
- **©** 720°
- **(D)** 1080°
- 3. Find x.
  - $(\mathbf{A})$  27
  - **(B)** 36.
  - **©** 9
  - **(D)** 18



- **4.** Which is *not* true of a parallelogram?
  - A Opposite angles are congruent.
- **B** Consecutive angles are complementary.
- © Opposite sides are congruent.
- Diagonals bisect each other.
- **5.** Find p and q.




- **(A)** p = 108, q = 29 **(B)** p = -28, q = 21
- **(C)** p = 8, q = 29
- **(D)** p = 108, q = 21
- **6.** Find a and b.

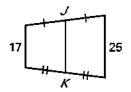



- **(A)** a = 111, b = 31 **(B)** a = 2, b = 10
- **©** a = 10, b = 2 **©** a = 31, b = 111

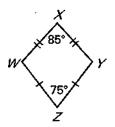
7. Which statement would not prove that ABCD is a parallelogram?



- $\overrightarrow{A}$   $\overrightarrow{AC} \cong \overrightarrow{CD}$  and  $\overrightarrow{AB} \cong \overrightarrow{BD}$
- $(\mathbf{B})$   $\overline{AD}$  and  $\overline{BC}$  bisect each other.
- **(D)**  $\overline{AB} \parallel \overline{CD}$  and  $\overline{AB} \cong \overline{CD}$
- **8.** What value of x makes quadrilateral STUV a parallelogram?
  - **(A)** 14
- **(B)** 102
- **©** 51
- **(D**) 7



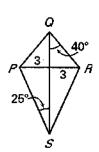

- 9. Which statement is false?
- (A) A parallelogram is a rectangle if and only if its diagonals are congruent.
- **B** A parallelogram is a rhombus if and only if its diagonals are congruent.
- © A quadrilateral is a square if and only if it is a rhombus and a rectangle.
- **D** A quadrilateral is a rectangle if and only if it has four right angles.
- 10. A quadrilateral with exactly one pair of parallel sides is a \_\_?\_\_.
  - (A) rhombus
- **B** parallelogram
- **C** trapezoid
- **D** square
- 11. Which statement about isosceles trapezoids is false?
  - A The base segments are congruent.
  - B It has a pair of congruent base angles.
  - © Its diagonals are congruent.
  - **D** Each pair of base angles is congruent.


### Standardized Test continued

For use after Chapter 8

- 12. Which statement about kites is false?
  - A kite's diagonals are perpendicular.
  - B A kite's opposite sides are congruent.
  - © A kite has two pairs of consecutive congruent sides.
  - (D) A kite has exactly one pair of opposite angles that are congruent.
- **13.** Find the length of the midsegment of the trapezoid shown.

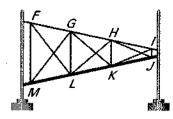



- **(A)** 21
- **(B)** 19
- **©** 20
- **(D)** 22
- **14.** WXYZ is a kite. Find  $m \notin W$ .
  - (A) 160°
  - **B** 200°
  - © 95°
  - **D** 100°



- **15.** Points A(3, 2), B(7, 2), C(6, 9) and D(4, 9) are the vertices of a quadrilateral. What is the most specific name for ABCD?
  - A parallelogram
- (B) trapezoid
- © rectangle
- **D** isosceles trapezoid

#### **Gridded Answer**


**16.** Find the perimeter of kite *PQRS* to the nearest tenth.



|          | 0        | 0        |          |
|----------|----------|----------|----------|
| 0        | 0        | 0        | 0        |
|          | Θ        | 0        | 0        |
| 0        | Θ        | Θ        | Θ        |
| 0        | ②        | 2        | 2        |
| 3        | 3        | 3        | 3        |
| <b>(</b> | <b>④</b> | 4        | <b>④</b> |
| ➂        | <b>③</b> | (3)      | ➂        |
| <b>③</b> | <b>©</b> | <b>©</b> | <b>©</b> |
| <b>Ø</b> | Ø        | Ø        | $\odot$  |
| 3        | ⑧        | ➂        | ⑧        |
| <b>9</b> | <b>9</b> | ම        | <u> </u> |

#### Short Response

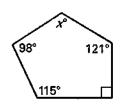
17. In the section of the suspension bridge shown,  $\overline{GL}$  is the midsegment of trapezoid FHKM and  $\overline{HK}$  is the midsegment of trapezoid GIJL.



- **a.** If HK = 30 ft and GL = 50 ft, how much cable is needed for  $\overline{FM}$  and  $\overline{LJ}$ ?
- **b.** If all trapezoids shown are isosceles trapezoids and FG = 60 ft, GH = 40 ft, and HI = 20 ft, find the length of all 16 segments to determine the total amount of linear cable feet needed.

### **SAT/ACT Chapter Test**

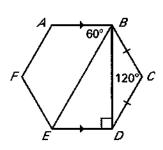
For use after Chapter 8


#### **Multiple Choice**

1. What is the sum of the interior angles of the following convex polygon?



- **(A)** 630°
- **B** 900°
- **©** 1080°


- (D) 1260°
- **(E)** 1620°
- **2.** What is the value of x?



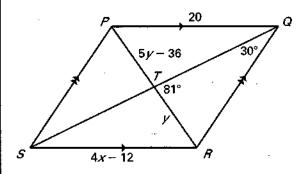
- **(A)** 105
- **B** 110
- **©** 115

- **D** 116
- **E** 121

# In Exercises 3-5, use the following figure.



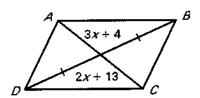
- **3.** What is the measure of  $\angle BED$ ?
  - **(A)** 20°
- **B** 30°
- **©** 40°


- **D** 50°
- **€** 60°
- **4.** What is the measure of  $\angle EBD$ ?
  - **(A**) 30°
- **B** 45°
- **©** 60°

- **D** 90°
- **(**€) 110°

- **5.** What is the measure of  $\angle CBD$ ?
  - **(A)** 30°
- **B** 45°
- **(C**) 60°

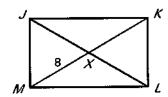
- **D** 90°
- **(E)** 110°


# In Exercises 6-9, use the following figure.



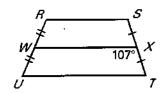
- **6.** What is the measure of  $\angle SPT$ ?
  - (A) 26°
- (B) 56°
- **©** 69°
- **(D)** 81°
- **(E**) 124°
- **7.** What is the measure of  $\angle PQT$ ?
- **(A)** 16°
- **B** 26°
- **©** 56°
- **(D)** 69°
- **E** 124°
- **8.** What is the value of x?
- **(A)** 2
- **B**) 4
- **©** 8
- **①** 10
- **E** 20
- **9.** What is the length of  $\overline{PR}$ ?
  - **(A)** 3
- **(B**) 6
- **©** 9
- **(D**) 18
- **E** 24

# SAT/ACT Chapter Test continued For use after Chapter 8


**10.** What value of x makes the quadrilateral

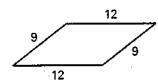


ABCD a parallelogram?


- **(A)** 1.8
- **B** 3.4
- **©** 5

- **(D)** 9
- **E** 17
- **11.** If JKLM is a rectangle, find the length of  $\overline{JL}$ .




- **(A)** 8
- **B** 16
- **©** 24

- **①** 32
- **E**) 40
- **12.** What is the measure of  $\angle RSX$ ?



- **(A)** 53.5°
- B 73°
- **©** 107°

- **D** 160°
- **(E)** 163.5°
- **13.** What is the most specific name for the quadrilateral?



- A Parallelogram
- **B** Trapezoid
- © Rectangle
- (D) Rhombus
- E Square

- **Gridded Answer**
- 14. The diagonals of rectangle ABCD intersect at point Z. If DZ = x + 6 and AC = 5x + 3, what is the length of  $\overline{AC}$ ?

| 0        | 00       | 00       | 0        |
|----------|----------|----------|----------|
| 24.00    | 0        | 0        | 0        |
| Θ        | Θ        | Θ        | ①        |
| @        | 2        | ②        | <b>②</b> |
| 3        | 3        | 3        | ③        |
| <b>④</b> | <b>④</b> | <b>④</b> | ➂        |
| ➂        | <b>③</b> | ➂        | ➂        |
| ➂        | <b>©</b> | <b>©</b> | ⊚        |
| Ø        | Ø        | (D)      | <b>O</b> |
| 3        | ➂        | ⑧        | ➂        |
| <u> </u> | <u> </u> | <u> </u> | <b>9</b> |

with bases  $\overline{MN}$  and  $\overline{OP}$ . If MN = 25 and OP = 23, what is the length of the midsegment of MNOP?

|          | Ø        | 0        |          |
|----------|----------|----------|----------|
| $\odot$  | $\odot$  | 0        | 0        |
|          | 0        | 0        | 0        |
| Θ        | Θ        | Θ        | Θ        |
| @        | ②        | ②        | 3        |
| 3        | 3        | 3        | 3        |
| <b>④</b> | <b>④</b> | <b>④</b> | <b>④</b> |
| <b>⑤</b> | 3        | ➂        | ➂        |
| <b>©</b> | <b>©</b> | (3)      | <b>©</b> |
| Ø        | Ø        | Ø        | Ø        |
| 3        | ➂        | ➂        | ➂        |
| <b>9</b> | ⑨        | <b>®</b> | <b>®</b> |

16. Two congruent sides of kite ABCD have lengths of 2x + 8 and 7x - 12. What is the length of one of these two sides?

|          | Ø        | 0        | Kin.     |
|----------|----------|----------|----------|
| 0        | $\odot$  | $\odot$  | $\odot$  |
| 367      | 0        | 0        | 0        |
| 0        | Θ        | 0        | Θ        |
| 2        | 3        | 2        | 2        |
| (3)      | 3        | 3        | 3        |
| <b>④</b> | <b>(</b> | <b>④</b> | <b>④</b> |
| (3)      | <b>③</b> | <b>③</b> | ③        |
| (O)      | <b>©</b> | <b>③</b> | <b>©</b> |
| 0        | 7        | (D)      | Ø        |
| (3)      | ⑧        | ⑧        | (3)      |
| <b>®</b> | <b>9</b> | <b>®</b> | <b>®</b> |