

Igniting imagination and innovation through learning.

Geometric Shapes and Area

Shape

Shape describes the two-dimensional contour that characterizes an object or area, in contrast to a three-dimensional solid. Examples include:

Area

Area is the extent or measurement of a surface. All shapes represent enclosed two-dimensional spaces, and thus have area.

Circles

A circle is a round plane figure whose boundary consists of points equidistant from the center.

Circles

The *circle* is the simplest and strongest of all the shapes. *Circles* are found within the geometry of countless engineered products, such as buttons, tubes, wires, cups, and pins. A drilled hole is also based on the simple *circle*.

Area of a Circle

In order to calculate the area of a *circle*, the concept of π (pi) must be understood. π is a constant ratio that exists between the circumference of a *circle* and its diameter.

The ratio states that for every unit of diameter distance, the circumference (distance around the *circle*) will be approximately 3.14 units.

Area of a Circle

To calculate the area of a *circle*, the *radius* must be known.

π≈ 3.14 r = radius A = area

radius (r)

Ellipses

An ellipse is generated by a point moving in a plane so that the sum of its distances from two other points (the foci) is constant and equal to the maior avie

Ellipses

To calculate the area of an ellipse, the lengths of the major and minor axis must

be
$$\pm$$
 mayor axis $\pi = 3.14$ $A = \pi ab$

$$2b = minor axis$$
 $A = area$

Polygons

A *polygon* is any plane figure bounded by straight lines. Examples include the triangle, rhombus, and trapezoid.

Triangles

A *triangle* is a three-sided polygon. The sum of the interior angles will always equal 180°.

All triangles can be classified as:

- Right Triangles
- Acute Triangles
- Obtuse Triangles

Triangles

The triangle is the simplest, and most structurally stable of al polygons.

This is why triangles are found in all types o structural designs.
Trusses are one such example.

Triangles

Sometimes the terms inscribed and circumscribed are associated with the creation of triangles and other polygons, as well as area calculations.

Area of a Triangle

The area of a *triangle* can be calculated by .5(bh).

b = base

h = height

A = area

A = .5(bh)

Quadrilaterals

A *quadrilateral* is a four-sided polygon. Examples include the square, rhombus, trapezoid, and trapezium:

Parallelograms

A parallelogram is a four-sided polygon with both pairs of opposite sides parallel. **Examples include** the square, rectangle, rhombus and rhomboid.

Parallelograms

The area of a

parallelogram can be

calculated by A = bh

b = base

h = height

A = area

A = bh

Regular Multisided

Polygons A regular multisided polygon has equal angles, equal sides, and can be inscribed in or circumscribed around a circle.

Examples of *regular multisided polygons* include the pentagon, hexagon,

hepta

Multisided Polygons

To calculate the area of a multisided polygon, a side length, distance between flats (or diameter of inscribed circle), and the number of sides must be known.

Multisided Polygons Area calculation of

a multisided polygoniength

f = distance between flats or diameter of inscribed circle

n = number of sides

A = area

$$A=n\frac{s(.5f)}{2}$$