Packet #6

Name_____ Date_____

7.1

Notetaking with Vocabulary For use after Lesson 7.1

In your own words, write the meaning of each vocabulary term.

diagonal

equilateral polygon

equiangular polygon

regular polygon

Theorems

Theorem 7.1 Polygon Interior Angles Theorem

The sum of the measures of the interior angles of a convex n-gon is $(n-2) \cdot 180^{\circ}$.

$$m\angle 1 + m\angle 2 + \cdots + m\angle n = (n-2) \cdot 180^{\circ}$$

Name_____ Date____

7.1

Notetaking with Vocabulary (continued)

Corollary 7.1 Corollary to the Polygon Interior Angles Theorem

The sum of the measures of the interior angles of a quadrilateral is 360°.

Notes:

Theorem 7.2 Polygon Exterior Angles Theorem

The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is 360°.

$$m\angle 1 + m\angle 2 + \cdots + m\angle n = 360^{\circ}$$

Name______ Date

7.1 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1~3, find the sum of the measures of the interior angles of the indicated convex polygon.

1. octagon

2. 15-gon

3. 24-gon

In Exercises 4–6, the sum of the measures of the interior angles of a convex polygon is given. Classify the polygon by the number of sides.

4. 900°

5. 1620°

6. 2880°

In Exercises 7–10, find the value of x.

7.

8.

9

10.

Name______ Date _____

7.2

Notetaking with Vocabulary For use after Lesson 7.2

In your own words, write the meaning of each vocabulary term.

parallelogram

Theorems

Theorem 7.3 Parallelogram Opposite Sides Theorem

If a quadrilateral is a parallelogram, then its opposite sides are congruent.

If PQRS is a parallelogram, then $\overline{PQ} \cong \overline{RS}$ and $\overline{QR} \cong \overline{SP}$.

Notes:

Theorem 7.4 Parallelogram Opposite Angles Theorem

If a quadrilateral is a parallelogram, then its opposite angles are congruent.

If PQRS is a parallelogram, then $\angle P \equiv \angle R$ and $\angle Q \cong \angle S$.

Name_____ Date____

7.2 Notetaking with Vocabulary (continued)

Theorem 7.5 Parallelogram Consecutive Angles Theorem

If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

If *PQRS* is a parallelogram, then $x^{\circ} + y^{\circ} = 180^{\circ}$.

Notes:

Notes:

Theorem 7.6 Parallelogram Diagonals Theorem

If a quadrilateral is a parallelogram, then its diagonals bisect each other.

If PQRS is a parallelogram, then $\overline{QM} \cong \overline{SM}$ and $\overline{PM} \cong \overline{RM}$.

Name _____ Date ____

7.2 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–3, find the value of each variable in the parallelogram.

In Exercises 4–11, find the indicated measure in MNOP. Explain your reasoning.

- **4.** PO
- **5.** *OQ*
- **6.** NO
- **7.** PQ

- **9.** *m∠NOP*
- **10**. *m∠OPM*
- **11.** *m∠NMO*

			:
·			
			-

Packet #8

Name_____ Date____

7.3

Notetaking with Vocabulary For use after Lesson 7.3

In your own words, write the meaning of each vocabulary term.

diagonal

parallelogram

Theorems

Theorem 7.7 Parallelogram Opposite Sides Converse

If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$, then ABCD is a parallelogram.

Notes:

Theorem 7.8 Parallelogram Opposite Angles Converse

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\angle A \cong \angle C$ and $\angle B \cong \angle D$, then ABCD is a parallelogram.

Notes:

Theorem 7.9 Opposite Sides Parallel and Congruent Theorem

If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.

If $\overline{BC} \parallel \overline{AD}$ and $\overline{BC} \cong \overline{AD}$, then ABCD is a parallelogram.

Name	· · · · · · · · · · · · · · · · · · ·	Date
7.3	Notetaking with Vocabulary (continued)	

Theorem 7.10 Parallelogram Diagonals Converse

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

If \overline{BD} and \overline{AC} bisect each other, then ABCD is a parallelogram.

Notes:

Core Concepts

Ways to Prove a Quadrilateral Is a Parallelogram

1. Show that both pairs of opposite sides are parallel. (Definition)	
2. Show that both pairs of opposite sides are congruent. (Parallelogram Opposite Sides Converse)	
3. Show that both pairs of opposite angles are congruent. (Parallelogram Opposite Angles Converse)	
4. Show that one pair of opposite sides are congruent and parallel. (Opposite Sides Parallel and Congruent Theorem)	
5. Show that the diagonals bisect each other. (Parallelogram Diagonals Converse)	

Name_ Date_

Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-3, state which theorem you can use to show that the quadrilateral is a parallelogram.

1.

3.

In Exercises 4–7, find the values of x and y that make the quadrilateral a parallelogram.

4.

√(3x - 20)°	$(x + 40)^{\circ}$
	1
	(4y)°

			•
			·

Name_____ Date ____

7.4

Notetaking with Vocabulary For use after Lesson 7.4

In your own words, write the meaning of each vocabulary term.

rhombus

rectangle

square

Core Concepts

Rhombuses, Rectangles, and Squares

A **rhombus** is a parallelogram with four congruent sides.

A rectangle is a parallelogram with four right angles.

A square is a parallelogram with four congruent sides and four right angles.

Notes:

Corollary 7.2 Rhombus Corollary

A quadrilateral is a rhombus if and only if it has four congruent sides.

ABCD is a rhombus if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$.

Corollary 7.3 Rectangle Corollary

A quadrilateral is a rectangle if and only if it has four right angles.

ABCD is a rectangle if and only if $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

Name_____ Date____

7.4 Notetaking with Vocabulary (continued)

Corollary 7.4 Square Corollary

A quadrilateral is a square if and only if it is a rhombus and a rectangle.

ABCD is a square if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$ and $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

Notes:

Theorem 7.11 Rhombus Diagonals Theorem

A parallelogram is a rhombus if and only if its diagonals are perpendicular.

 $\square ABCD$ is a rhombus if and only if $\overline{AC} \perp \overline{BD}$.

Notes:

Theorem 7.12 Rhombus Opposite Angles Theorem

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.

 $\square ABCD$ is a rhombus if and only if \overline{AC} bisects $\angle BCD$ and $\angle BAD$, and \overline{BD} bisects $\angle ABC$ and $\angle ADC$.

Notes:

Theorem 7.13 Rectangle Diagonals Theorem

A parallelogram is a rectangle if and only if its diagonals are congruent.

 $\square ABCD$ is a rectangle if and only if $\overline{AC} \cong \overline{BD}$.

7.4 Notetaking with Vocabulary (continued)

Extra Practice

- 1. For any rhombus MNOP, decide whether the statement $\overline{MO} \cong \overline{NP}$ is always or sometimes true. Draw a diagram and explain your reasoning.
- **2.** For any rectangle PQRS, decide whether the statement $\angle PQS \equiv \angle RSQ$ is always or sometimes true. Draw a diagram and explain your reasoning.

In Exercises 3–5, the diagonals of rhombus *ABCD* intersect at *E*. Given that $m\angle BCA = 44^{\circ}$, AB = 9, and AE = 7, find the indicated measure.

- **3.** BC
- **4.** AC
- **5.** *m∠ADC*

In Exercises 6–8, the diagonals of rectangle *EFGH* intersect at *I*. Given that $m\angle HFG = 31^{\circ}$ and EG = 17, find the indicated measure.

- 6. m∠FHG
- **7.** *HF*
- **8.** *m∠EFH*

In Exercises 9–11, the diagonals of square LMNP intersect at K. Given that

 $MK = \frac{1}{2}$, find the indicated measure.

- 9. PK
- **10**. *m∠PKN*
- **11**. *m∠MNK*

•					:
	•				
	•				

Packet #10

Name_____ Date____

7.5

Notetaking with Vocabulary For use after Lesson 7.5

In your own words, write the meaning of each vocabulary term.

trapezoid

bases

base angles

legs

isosceles trapezoid

midsegment of a trapezoid

kite

Theorems

Theorem 7.14 Isosceles Trapezoid Base Angles Theorem

If a trapezoid is isosceles, then each pair of base angles is congruent.

If trapezoid ABCD is isosceles, then $\angle A \cong \angle D$ and $\angle B \cong \angle C$.

Theorem 7.15 Isosceles Trapezoid Base Angles Converse

If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$), then trapezoid ABCD is isosceles.

Namo

Date

7.5

Notetaking with Vocabulary (continued)

Theorem 7.16 Isosceles Trapezoid Diagonals Theorem

A trapezoid is isosceles if and only if its diagonals are congruent.

Trapezoid ABCD is isosceles if and only if $\overline{AC} \cong \overline{BD}$.

Theorem 7.17 Trapezoid Midsegment Theorem

The midsegment of a trapezoid is parallel to each base, and its length is one-half the sum of the lengths of the bases.

If \overline{MN} is the midsegment of trapezoid *ABCD*, then $\overline{MN} \parallel \overline{AB}$, $\overline{MN} \parallel \overline{DC}$, and $\overline{MN} = \frac{1}{2}(AB + CD)$.

Theorem 7.18 Kite Diagonals Theorem

If a quadrilateral is a kite, then its diagonals are perpendicular.

If quadrilateral ABCD is a kite, then $\overline{AC} \perp \overline{BD}$.

Theorem 7.19 Kite Opposite Angles Theorem

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

If quadrilateral ABCD is a kite and $\overline{BC} \cong \overline{BA}$, then $\angle A \cong \angle C$ and $\angle B \not\cong \angle D$.

7.5

Notetaking with Vocabulary (continued)

Extra Practice

1. Show that the quadrilateral with vertices at Q(0,3), R(0,6), S(-6,0), and T(-3,0) is a trapezoid. Decide whether the trapezoid is isosceles. Then find the length of the midsegment of the trapezoid.

In Exercises 2 and 3, find $m \angle K$ and $m \angle L$.

2.

3.

In Exercises 4 and 5, find CD.

4.

5.

In Exercises 6 and 7, find the value of x.

6.

7.

			:
•			