Geometry Regents Review #4

Directions: Answer ALL questions. Show ALL work in column 2.

If there is no mathematical work to be shown, write an explanation or definition to support This counts as a quiz grade!!! (20 pts.) your answer!

Explain/Show work

- 1. Find the m<1.
 - 1) 36°
 - 2) 310
 - 3) 670
 - 4) 1440

Show work

In the diagram below, $\triangle ABC$ has vertices A(4,5), B(2,1), and C(7,3).

Explain and/or Show work

2.

What is the slope of the altitude drawn from A to \overline{BC} ?

 $(1) \frac{2}{5}$

3. What is the slope of a line perpendicular to the line whose equation is 2y = -6x + 8?

Show work

- 1) -3
- 3) $\frac{1}{3}$
- 4) -6

4. The graphs of the equations $y = x^2 + 4x - 1$ and y + 3 = x are drawn on the same set of axes. At which point do the graphs intersect?

Show work

- 1. (1,4) 2. (1,-2) 3. (-2,1) 4.(-2, -5)

5. Solve for x.

- 1) 9.72
- 2) 7
- 3) -7
- 4) 6.63

Show work

Line segment EA is the perpendicular bisector of \overline{ZT} , and \overline{ZE} and \overline{TE} are drawn.	Explain your choice!!!!
 Which conclusion can not be proven? (1) EA bisects angle ZET. (2) Triangle EZT is equilateral. (3) EA is a median of triangle EZT. (4) Angle Z is congruent to angle T. 	
7. If two isosceles triangles have congruent vertex angles, then the triangles must be 1) congruent 2) equilateral 3) right 4) similar	Explain your choice and/or show work!!!!
8. $m \angle VUT = 175^{\circ}, m \angle VUJ = 17x - 3,$ 1) 5 and $m \angle JUT = 17x + 8$. Find x . 2) 5.14 v 3)180 v 4) 2.5	Show work
 9. In an isosceles triangle, the legs are 4 more than the length of the base. If the total perimeter is 44, find the length of the legs. 1) 16 2) 12 3) 5.5 4) 4.9 	Show work/Explain

16. In the diagram below of $\triangle HQP$, side \overline{HP} is extended through P to T , $m\angle QPT = 6x + 20$, $m\angle HQP = x + 40$, and $m\angle PHQ = 4x - 5$.	Show work
Find m $\angle QPT$. $(x + 40)^{\circ}$	
1 md m2g/ 2:	
42 - 2000	
$(6x + 20)^{\circ}$ $(4x - 5)^{\circ}$ H	
(Not drawn to scale)	
17. Explain how you can prove triangle ABC congruent to triangle	Explanation:
DEC.	Explanation.
C	
18. The vertices of triangle RAT have coordinates R (-1,5),	Show work
A (-3,1) and T (1,3). What is the <u>perimeter</u> of triangle RAT in	Show work
simplest radical form?	
19. In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} .	Show work/Explain
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} .	Show work/Explain
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$	Show work/Explain
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} .	Show work/Explain
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} .	Show work/Explain
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} .	Show work/Explain
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} .	Show work/Explain
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} . $ X = \begin{bmatrix} X & X & X \\ X & Z \end{bmatrix} $ Determine and state whether $\overline{BC} \cong \overline{YZ}$. Explain why.	
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} .	Show work/Explain Show work
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} . B Determine and state whether $\overline{BC} \cong \overline{YZ}$. Explain why. 20. Determine the values of x and y.	
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} . $ X = \begin{bmatrix} X & X & X \\ X & Z \end{bmatrix} $ Determine and state whether $\overline{BC} \cong \overline{YZ}$. Explain why.	
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} . Determine and state whether $\overline{BC} \cong \overline{YZ}$. Explain why. 20. Determine the values of x and y.	
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} . Determine and state whether $\overline{BC} \cong \overline{YZ}$. Explain why. 20. Determine the values of x and y. $(x+21)^{\circ}$	
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} . Determine and state whether $\overline{BC} \cong \overline{YZ}$. Explain why. 20. Determine the values of x and y. $(x+21)^{\circ}$ $(x+7)^{\circ}$	
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} . Determine and state whether $\overline{BC} \cong \overline{YZ}$. Explain why. 20. Determine the values of x and y. $(x+21)^{\circ}$	
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} . Determine and state whether $\overline{BC}\cong \overline{YZ}$. Explain why. 20. Determine the values of x and y. $(x+7)^{\circ}$ $(x+7)^{\circ}$	
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} . Determine and state whether $\overline{BC}\cong \overline{YZ}$. Explain why. 20. Determine the values of x and y. $(x+7)^{\circ}$ $(x+7)^{\circ}$	
In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$ $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} . Determine and state whether $\overline{BC}\cong \overline{YZ}$. Explain why. 20. Determine the values of x and y. $(x+7)^{\circ}$ $(x+7)^{\circ}$	