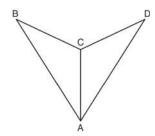
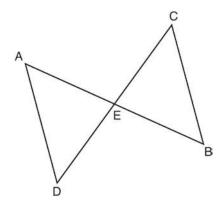

G.G.28: Triangle Congruency 1: Determine the congruence of two triangles by using one of the five congruence techniques (SSS, SAS, ASA, AAS, HL), given sufficient information


1 In the diagram of $\triangle ABC$ and $\triangle DEF$ below, $\overline{AB} \cong \overline{DE}$, $\angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove

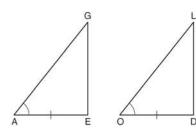
 $\triangle ABC \cong \triangle DEF$?

- 1) SSS
- 2) SAS
- 3) ASA
- 4) HL
- 2 As shown in the diagram below, \overline{AC} bisects $\angle BAD$ and $\angle B \cong \angle D$.



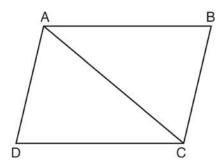
Which method could be used to prove

 $\triangle ABC \cong \triangle ADC$?


- 1) SSS
- 2) AAA
- 3) SAS
- 4) AAS

3 In the diagram below of $\triangle DAE$ and $\triangle BCE$, \overline{AB} and \overline{CD} intersect at E, such that $\overline{AE} \cong \overline{CE}$ and $\angle BCE \cong \angle DAE$.

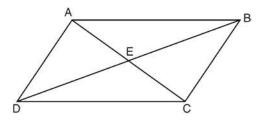
Triangle *DAE* can be proved congruent to triangle *BCE* by


- 1) ASA
- 2) SAS
- 3) SSS
- 4) HL
- 4 In the diagram below of $\triangle AGE$ and $\triangle OLD$, $\angle GAE \cong \angle LOD$, and $\overline{AE} \cong \overline{OD}$.

To prove that $\triangle AGE$ and $\triangle OLD$ are congruent by SAS, what other information is needed?

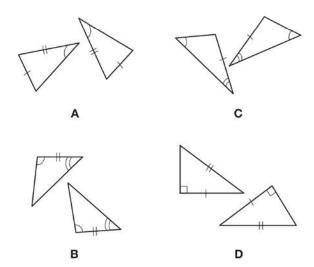
- 1) $\overline{GE} \cong \overline{LD}$
- 2) $\overline{AG} \cong \overline{OL}$
- 3) $\angle AGE \cong \angle OLD$
- 4) $\angle AEG \cong \angle ODL$

5 In the diagram of quadrilateral \overline{ABCD} , $\overline{AB} \parallel \overline{CD}$, $\angle ABC \cong \angle CDA$, and diagonal \overline{AC} is drawn.



Which method can be used to prove $\triangle ABC$ is congruent to $\triangle CDA$?

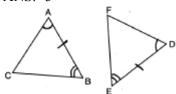
- 1) AAS
- 2) SSA
- 3) SAS
- 4) SSS
- 6 The diagonal \overline{AC} is drawn in parallelogram ABCD. Which method can *not* be used to prove that $\triangle ABC \cong \triangle CDA$?


 - 2) SAS
 - 3) SSA
 - 4) ASA

7 In parallelogram ABCD shown below, diagonals \overline{AC} and \overline{BD} intersect at E.

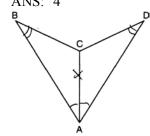
Which statement must be true?

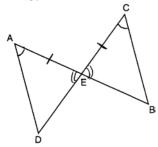
- 1) $\overline{AC} \cong \overline{DB}$
- 2) $\angle ABD \cong \angle CBD$
- 3) $\triangle AED \cong \triangle CEB$
- 4) $\triangle DCE \cong \triangle BCE$
- 8 In the diagram below, four pairs of triangles are shown. Congruent corresponding parts are labeled in each pair.



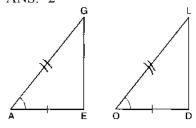
Using only the information given in the diagrams, which pair of triangles can *not* be proven congruent?

- 1) A
- 2) B
- 3) *C*
- 4) D


G.G.28: Triangle Congruency 1: Determine the congruence of two triangles by using one of the five congruence techniques (SSS, SAS, ASA, AAS, HL), given sufficient information Answer Section


REF: 060902ge

2 ANS: 4


REF: 081114ge

3 ANS: 1

REF: 081210ge

4 ANS: 2

REF: 081007ge

5 ANS: 1 REF: 011122ge 6 ANS: 3 REF: 080913ge 7 ANS: 3

. Opposite sides of a parallelogram are congruent and the diagonals of a parallelogram

bisect each other.

REF: 061222ge

8 ANS: 1 REF: 011412ge