

forming cavities

10

Cell wall

Ill Kenny and David Greenwood Friday Afternoon Biologyou RESOURCE PACK

300

0000

Friday Afternoon **Biology**

Philip Allan Updates Market Place Deddington Oxfordshire OX15 0SE

Orders

Bookpoint Ltd, 130 Milton Park, Abingdon, Oxfordshire, OX14 4SB tel: 01235 827720 fax: 01235 400454 e-mail: uk.orders@bookpoint.co.uk

Lines are open 9.00 a.m.–5.00 p.m., Monday to Saturday, with a 24-hour message answering service. You can also order through the Philip Allan Updates website: www.philipallan.co.uk

© Philip Allan Updates 2008 All rights reserved

ISBN 978-0-340-96663-1

Design by Gary Kilpatrick

Printed by Marston Book Services Ltd, Didcot

Copyright notice

Any educational establishment that has purchased one copy of this publication may make duplicate copies for use exclusively within that institution. Permission does not extend to reproduction, storage in a retrieval system, or transmittal, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise of duplicate copies for loaning, renting or selling to any other institution without the prior consent in writing of the publisher.

Restrictions on use of CD-ROM

All rights reserved. The CD-ROM must not be sold, rented, leased, sublicensed, lent, assigned or transferred, in whole or in part, to third parties. No part of the CD-ROM may be reformatted, adapted, varied or modified by the user other than specifically for teaching purposes. The CD-ROM may not be reproduced or transmitted in any form or by any means without the permission of the publisher, other than in the form of printed copies for teaching purposes within the purchasing institution.

Environmental information

The paper on which this title is printed is sourced from managed, sustainable forests.

Introduction

Why use these activities?

First and foremost, these activities are fun. They help engage students, creating situations in which they can enjoy lessons, and although students might regard many of these activities as games, their potential for knowledge building is powerful. Such an approach makes learning active rather than passive, a methodology that has been advocated by many current educational gurus, such as Geoff Petty and Robert Powell.

Many educational theorists favour formative learning: students need to be tested regularly in order to build confidence, highlight areas of weakness, and allow for reflection and discussion of topics studied in class. These activities give direct feedback to students on their level of understanding of key terms and concepts.

Students work best using a variety of learning styles. The work of theorists such as Howard Gardner advises that revision activities should be varied, allowing students to work in small groups (matching, triominoes) and whole-class groups (dominoes, bingo), as well as individually. This taps into linguistic, logical, interpersonal and intrapersonal intelligence traits. The use of small cards also fulfils the requirements of kinaesthetic learners. Students possess all these intelligences, and more, to different degrees. If they only use one learning style, for example answering exam-style questions, this fails to tap into their multiple intelligences.

Ofsted expects students to understand and show confidence in using relevant terminology and concepts. The activities in this pack seek to reinforce and build upon prior learning — this is useful for teachers and gives a confidence boost to students.

How to use this pack

Dominoes There are several uses for these cards.

Whole-class activity

Photocopy one set of dominoes onto card. Each domino has a question on one half and an answer (to another question) on the other half. Cut out the dominoes and give one or more to each student. One student starts by reading out the question on his or her domino; the other students listen and read out their answer if they think it is the correct one. The student who has read the correct answer then reads the question from the same domino and the game continues until every student has answered. The game will finish with the person who read their question first.

If there are blank faces after a particular question, you can clarify it or give the correct answer so that the game will continue with each domino card being followed by the

next one in the correct sequence. You can check answers by looking at the teacher answer sheet, which shows the correct sequence.

Small-group dominoes

Photocopy several sets of dominoes and cut them out as before. Students should be divided into groups of three or four and each group given a complete set of dominoes (you may wish to copy each set onto different coloured card to prevent the sets becoming mixed up). Dominoes are dealt equally, and the youngest player places the first one. Play then moves to the left, and each player should lay a domino with a corresponding answer (or question) to a domino already on the table. The winner is the player who gets rid of his or her dominoes first. Students should 'knock' (tap the table and miss a turn) if they cannot place a domino.

An alternative method is to give each group a complete set of dominoes and ask students to make a complete chain of connected dominoes, working as a team rather than taking turns. Again, reward the group that finishes first.

Matching

Photocopy several sets of a matching exercise onto card and cut them up. In groups of two or three, students should match each tinted card to its white partner. This generates excellent discussion, as does the matching itself. When students have completed the exercise, circulate a copy of the correct terms and definition.

Triominoes

Photocopy several sets of triominoes onto card and cut them out. In small groups, students should be given the central black triangles and outer triangles separately, and asked to match three outer triangles to each of the relevant central topics (as on the original templates).

Play your cards right

Photocopy the cards and cut them out. Each student needs a set of the cards. Ask students to stand up, holding their cards. Read out the first definition — students must then quickly hold up the most appropriate card for the definition. Students who hold up a wrong answer must sit down. The game continues until only one person is standing — this student has won and could be rewarded with a small prize (come prepared with a chocolate bar).

Bingo

Photocopy the bingo card and give one to each student. Ask students to select terms from the list provided to fill their card. Read out definitions randomly from the list provided, and ask students to listen carefully and cross off each term on their cards once they think it has been defined. When all the terms on their card have been crossed off, students should shout 'bingo!' The first student to shout out should read out the terms on his or her card, so you can check they were defined. This game helps students to learn

Variation

Ask the winning student to repeat the definitions as he or she reads out the terms on the winning card. Other students could assist, in order to help learning further.

Jigsaws

Jigsaws comprise a set of cards with statements around the edges. Each statement can be matched to another on a different card. In this way, a larger shape (hexagon or rectangle), is built up as the statements are matched (placed alongside each other). Card edges without statements form the perimeter of the jigsaw. These activities are more demanding and may be useful for 'stretch and challenge'.

Diamonds

Photocopy each grid onto thin card, and cut through the thick black lines. Organise your students into pairs. They should consult with each other to match eight of the cards around each shaded square. Discussion is generated as they attempt to match the cards.

Sequencing

Each set contains cards with a description of the stages of a biological process(es). Where there is more than one sequence in the activity (e.g. nerve impulse and synaptic transmission) the cards must first be sorted into the processes before sequencing. Students should work in pairs or small groups, and each group must decide on the correct sequence(s) by placing the cards in one or more columns.

Timing of activities

It is difficult to provide times here, as it depends on whether you decide to intervene — for example, you might stop a dominoes activity whenever someone has difficulty and explain the key concept in depth to the whole class. Naturally, this will lengthen timings from the rough guidelines given below.

Activity	Timing
Bingo	10–15 minutes
Diamonds	5–10 minutes
Dominoes	10–15 minutes
Jigsaws	10–20 minutes
Matching	10 minutes (plus 5–10 minutes to go through the answers)
Play your cards right	10 minutes
Sequencing	10–15 minutes (plus 5 minutes to go through the answers)
Triominoes	10–15 minutes (plus 5 minutes to go through the answers)

Take the time to pick up on any problems your students have. These activities can highlight areas of knowledge that students are lacking — it is up to you to use the time wisely.

When to use the activities

Most of these activities can be used at the start, middle or end of a lesson. For example, dominoes exercises are useful at the start of a lesson, giving students something to do while latecomers arrive. A more interactive activity, such as play your cards right, can add variation in the middle of a long theoretical session.

The activities are also useful for revisiting a particular module or topic — for example, when teaching genes and DNA technology, you could introduce a game of nucleic acid matching dominoes to add variety and revisit prior learning.

Content and specification coverage

		AQA		AQA EDEXC		0	CR
Торіс	Pages	AS	A2	AS	A2	AS	A2
1 Cell structure and function							
AS Diamonds: Cells and microscopy	10-14	\checkmark		1		1	
AS Dominoes: Cell structure	15–19	1		1		1	
AS Play your cards right: Cell organelles	20-23	1		1		1	
AS Triominoes: Cell organelles	24–27	1		1		1	
2 Cell division							
AS Diamonds: Cell division	29–31	\checkmark		1		1	
AS Dominoes: Mitosis	32–36	1		1		1	
AS Matching: Mitosis	37–42	\checkmark		1		1	
AS Triominoes: Meiosis	43–48	\checkmark		1		1	
3 Biological molecules							
AS Bingo: Enzymes	50-51	\checkmark		1		1	
AS Dominoes: Enzymes	52-56	1		1		1	
AS Matching: Nucleic acids	57–63	\checkmark		1		1	
AS Play your cards right: Biological molecules	64–66	\checkmark		1		1	
4 Transport and exchange							
AS Bingo: Heart and circulation	68–69	\checkmark		1		1	
AS Diamonds: Cardiac cycle	70–72	1		1		1	
AS Dominoes: Heart and circulation	73–77	\checkmark		1		1	
AS Dominoes: Membranes	78–82	\checkmark		1		1	
AS Jigsaw: Transport across membranes	83–86	\		1		1	
AS Matching: Heart and heart disease	87–93	1		1		1	
5 Genes and DNA technology	•						
A2 Bingo: DNA technology	95–96		1		1		1
AS/A2 Matching: Genetics	97–105		1	 Image: A start of the start of		1	
A2 Sequencing: DNA fingerprinting/electrophoresis	106-107		1		1		1
A2 Sequencing: Protein synthesis	108-110		1		1		1
A2 Sequencing: Recombinant DNA technology	111–112		1		1		1

Contents and specification coverage

					AQA		AQA		XCEL	00	CR
Торіс	Pages	AS	A2	AS	A2	AS	A2				
6 Ecology											
A2 Bingo: Ecology	114–115		1		✓		~				
A2 Dominoes: Ecology	116–120		1		✓		✓				
A2 Jigsaw: Carbon and nitrogen cycles	121–124		1		1		1				
A2 Matching: Ecological terms	125–133		1		1		1				
7 Photosynthesis and respiration											
A2 Bingo: Respiration and photosynthesis	135–136		1		1		1				
A2 Dominoes: Respiration	137–141		1		1		1				
A2 Sequencing: Photosynthesis	142–145		1		1		1				
A2 Triominoes: Photosynthesis	146–150		1		1		1				
8 Nervous and hormonal control											
A2 Dominoes: Blood glucose	152–156		1		1		1				
A2 Dominoes: Thermoregulation	157–161		1		1						
A2 Jigsaw: Nervous system	162–164		1		1		1				
A2 Sequencing: Nerve impulses and synapses	165–169		1		1		1				
9 Classification	I			:	:						
AS Play your cards right: Classification	171–174					1					
AS Matching: Classification	175–180					\checkmark					

Cell structureand function

- AS Diamonds: Cells and microscopy
- AS Dominoes: Cell structure
- AS Play your cards right: Cell organelles
- AS Triominoes: Cell organelles

Cell structure and function

AS Dominoes: Cell structure

Cell structure and function AS Dominoes: Cell structure

Cell structure and function AS Dominoes: Cell structure

Cell structure and function AS Dominoes: Cell structure

Teacher answers

A	Eukaryotic	Q	Which organelle contains chromatin?
A	Nucleus	Q	Which organelle is the site of translation?
A	Ribosome	Q	What is the main function of the mitochondrion?
A	Aerobic respiration	Q	Which organelle produces the spindle fibres during mitosis?
A	Centriole	Q	Which organelle is responsible for the synthesis of lipids in the cell?
A	Smooth ER	Q	Which organelle contains hydrolytic enzymes?
A	Lysosome	Q	What is the main function of the nucleolus?
A	Production of ribosomal RNA	Q	Which organelle is made of stacks of membranes and covered in ribosomes?
A	Rough ER	Q	Which organelle packages proteins for export from the cell by exocytosis?
A	Golgi apparatus	Q	Which organelle is the site of respiration in a prokaryotic cell?
A	Mesosome	Q	Prokaryotes contain which type of ribosomes?
A	70S	Q	What substance forms the cell wall of prokaryotes?
A	Peptidoglycan	Q	Which term means 'before the nucleus'?
A	Prokaryotic	Q	Which type of ribosomes do eukaryotes contain in their cytoplasm?
A	805	Q	How many membranes surround the nucleus?
A	Two	Q	Which organelle in animal cells, other than the nucleus, also contains DNA?
A	Mitochondrion	Q	Which organelle is never found in prokaryotes or animals cells?
A	Chloroplast	Q	What is the function of the plasma membrane?
A	Control of transport into and out of the cell	Q	Which structures increase the surface area of the inner mitochondrial membrane?
A	Cristae	Q	Which process describes how proteins are exported from cells?
A	Exocytosis	Q	What substance is the plant cell wall made of?
A	Cellulose	Q	Which structures present in some animal cells increase the surface area of the cell membrane?
A	Microvilli	Q	Which pigment makes chloroplasts green?
A	Chlorophyll	Q	Which term means 'true nucleus'?

Cell structure and function

AS: Play your cards right: Cell organelles

Cell structure and function AS Play your cards right: Cell organelles

Cell structure and function AS Play your cards right: Cell organelles

Cell structure and function AS Play your cards right: Cell organelles

Teacher questions and answers

This organelle contains chlorophyll	Chloroplast
This organelle carries out aerobic respiration	Mitochondrion
This organelle contains the genetic material of the cell	Nucleus
This organelle is made of cellulose	Cell wall
This plant organelle is found on the outside of the cell	Cell wall
This organelle carries out photosynthesis	Chloroplast
This organelle has an envelope with pores in it	Nucleus
This organelle contains folds called cristae	Mitochondrion
This organelle produces oxygen	Chloroplast
This organelle controls transport of materials into and out of the cell	Cell membrane
This organelle is not made of membrane	Cell wall
This organelle contains starch	Chloroplast
This organelle may contain chromosomes	Nucleus
This organelle requires oxygen to work	Mitochondrion
This organelle has a structure described by the fluid mosaic model	Cell membrane
This organelle contains one or more nucleoli	Nucleus
This organelle is usually sausage-shaped	Mitochondrion
This organelle contains thylakoids	Chloroplast
This organelle is only 7 nm (7 billionths of a metre) thick	Cell membrane
This organelle prevents osmotic lysis (in plant cells and bacteria)	Cell wall
This organelle contains stroma	Chloroplast
This organelle contains matrix	Mitochondrion
This organelle is freely permeable	Cell wall

AS Triominoes: Cell organelles

Cell structure and function AS Triominoes: Cell organelles

Cell structure and function AS Triominoes: Cell organelles

Cell structure and function AS Triominoes: Cell organelles

Friday Afternoon **Biology**

2 Cell division

- AS Diamonds: Cell division
- AS Dominoes: Mitosis
- AS Matching: Mitosis
- AS Triominoes: Meiosis

Cell division

AS Diamonds: Cell division

Cell division AS Diamonds: Cell division

Cell division AS Diamonds: Cell division

Cell division

Teacher answers

A	chromatids apart	Q	Spindle forms between
A	the poles	Q	Chromatids attach to the spindle at the
A	equator	Q	S phase is where
A	DNA replication occurs	Q	Growth and repair
A	involves mitosis	Q	Clones form by
A	asexual reproduction	Q	Nuclear envelope breaks down at the end of
A	prophase	Q	Anaphase
A	is where spindle fibres contract	Q	Chromosomes are in two nuclei
A	at the end of telophase	Q	Centromere splits, so chromatids
A	are now called chromosomes	Q	Late prophase shows
A	chromosome as chromatids	Q	The last part of interphase is
A	G2	Q	Mitosis results in
A	genetically identical cells	Q	Cytokinesis results in
A	two new cells	Q	Clones show no
A	variation	Q	New genetically identical cells are
A	daughter cells	Q	Metaphase
A	is where chromosomes line up on the equator	Q	Centromeres join
A	chromosomes together	Q	Two new nuclear envelopes form before
A	cytokinesis	Q	Diploid cells divide to make diploid cells, which
A	maintains the chromosome number	Q	G1 phase is where
A	organelles replicate	Q	Prophase is where chromosomes
A	condense	Q	Anaphase is where chromatids
A	move to poles	Q	Centromere splits, pulling

Cell division AS Matching: Mitosis

Metaphase

Y

Cell division AS Matching: Mitosis

	c	ρ	9.0 1
م	DNA replication takes place	The cells produced as a result of the mitosis or meiosis of a parent cell	The pattern of events undertaken by dividing cells, including interphase and mitosis or meiosis
٥٠	Cell division in which all daughter cells are genetically identical to the parent cell	The mixture of DNA and protein from which chromosomes are made	Chromosomes become visible, spindle apparatus forms, nucleolus disappears and nuclear envelope breaks down
J X	The chromosomes reach the poles and a new nuclear envelope forms around each set; the chromosomes uncoil, once more becoming invisible	The spindle fibres contract, causing the two chromatids of each chromosome to separate and move to opposite poles of the cell	Made of chromatin (DNA and protein), and consisting of a pair of chromatids joined at the centromere

Cell division AS Matching: Mitosis

Teacher answers

Cell division

AS Triominoes: Meiosis

Biological molecules

- AS Bingo: Enzymes
- AS Dominoes: Enzymes
- AS Matching: Nucleic acids
- AS Play your cards right: Biological molecules

Biological molecules

AS Bingo: Enzymes

Teacher definitions

Activation energy

The energy required to begin a chemical reaction, which can be reduced by enzymes

Active site The part of the enzyme into which the substrate fits

Alpha helix A coiled arrangement of the polypeptide chain

Catalyst Any substance that speeds up the rate of a reaction

Competitive inhibitor Slows down enzyme reactions by fitting into the active site

Complementary The relationship between the active site and the substrate

Denaturation Loss of the tertiary structure

Enzyme-substrate complex Formed when a substrate fits into the active site

Hydrogen bonds These help to maintain the three-dimensional shape of the enzyme

Induced fit

A theory that suggests that the active site moulds itself around the substrate

Lock and key A theory that suggests that the active site is a rigid structure

Non-competitive inhibitor This slows down enzyme reactions by fitting into a part of the enzyme other than the active site

Optimum temperature The temperature at which an enzyme works fastest

Substrate The molecule on which the enzyme acts

Tertiary structure The three-dimensional shape of the enzyme

J

A	formation of enzyme-substrate complexes	Q	Active sites and substrates are precisely complementary
Α	like locks and keys	Q	Increasing the temperature
A	increases the kinetic energy of enzyme and substrate	Q	All enzymes are
A	proteins	= Q	A high substrate concentration
A	increases the rate of reaction	Q	A low enzyme concentration
A	limits the rate of reaction	Q	Enzyme-substrate complexes form
A	when a substrate fits into an active site	Q	Changing pH can break
A	some hydrogen and ionic bonds	Q	A non-competitive inhibitor
A	changes the shape of an active site	= Q	Enzymes lower
A	activation energy	Q	An induced fit occurs when
A	the active site moulds around the substrate	Q	Substrates fit into
A	the active site	Q	Enzymes are
A	biological catalysts	Q	Competitive inhibitors reduce formation of
A	enzyme-substrate complexes	= Q	The optimum temperature of most enzymes
A	is around 40-50°C	Q	Competitive inhibitors have a
A	shape similar to the substrate	= Q	Competitive inhibitors
A	fit into the active site	= Q	Hydrogen bonds break
A	above the optimum temperature	Q	Increased kinetic energy of enzyme and substrate
A	increases the number of collisions	= Q	Enzymes become saturated with substrates
A	at very high substrate concentrations	= Q	The best fit of enzyme and substrate
A	occurs at the optimum temperature	= Q	Loss of tertiary structure is
A	denaturation	Q	A non-competitive inhibitor has
A	a shape very different from the substrate	Q	A change to the shape of the active site reduces —

Biological molecules

AS Matching: Nucleic acids

Biological molecules

AS Matching: Nucleic acids

Biological molecules AS Matching: Nucleic acids

		90 1
A molecule containing nitrogen and carbon, comprising one ring structure	Two complementary bases held together by hydrogen bonds, e.g. A-T and C-G	Number of hydrogen bonds between cytosine and guanine
A pyrimidine base found only in RNA	A purine base complementary to cytosine	A molecule containing nitrogen and carbon, comprising two ring structures
Weak bonds between complementary bases	The arrangement of complementary polynucleotides in the double helix	Monomer of nucleic acids

Biological molecules

AS Matching: Nucleic acids

0	Shape of DNA molecules	Number of hydrogen bonds between adenine and thymine	The relationship between adenine and thymine, and between cytosine and guanine, for example
0	Strong bonds between adjacent nucleotides in a polynucleotide		

Teacher answers

Biological molecules

AS Play your cards right: Biological molecules

Teacher questions and answers

These are made of monomers called monosaccharides	Carbohydrates		
These are not polymers	Lipids		
DNA and RNA are examples of these	Nucleic acids		
These are made up of one or more chains of amino acids	Proteins		
These may have glycosidic bonds	Carbohydrates		
These are made from monomers called nucleotides	Nucleic acids		
These contain as many as 20 different monomers	Proteins		
These include triglycerides	Lipids		
These include glucose and starch	Carbohydrates		
These contain nitrogen and phosphorus	Nucleic acids		
These have peptide bonds	Proteins		
These contain a nitrogenous base	Nucleic acids		
These all have a primary structure	Proteins		
These include cellulose	Carbohydrates		
These contain a sugar–phosphate backbone	Nucleic acids		
These may contain fatty acids	Lipids		
Each type of these contains up to four different monomers	Nucleic acids		
These contain at least one polypeptide	Proteins		
These contain purines and pyrimidines	Nucleic acids		
These may contain long hydrocarbon chains	Lipids		
These may have hydrogen and ionic bonds	Proteins		
These include haemoglobin	Proteins		
These may include uracil and guanine	Nucleic acids		
These may contain an alpha-helix structure	Proteins		
These are not found in the plasma (cell) membrane	Nucleic acids		

nn, ng add of

A Transport and and exchange

- AS Bingo: Heart and circulation
- AS Diamonds: Cardiac cycle
- AS Dominoes: Heart and circulation
- AS Dominoes: Membranes
- AS Jigsaw: Transport across membranes
- AS Matching: Heart and heart disease

Transport and exchange

AS Bingo: Heart and circulation

Teacher definitions

Aorta This takes oxygenated blood away from the heart

Atrioventricular valves These prevent backflow of blood from the ventricles

Cardiac cycle The events occurring in a single heart beat

Deoxygenated

Type of blood flowing through the right side of the heart

Diastole Relaxation of the cardiac muscle

Left atrium This receives blood from the pulmonary veins

Left ventricle This part of the heart has the thickest muscular walls

Oxygenated Type of blood flowing through the left side of the heart

Pulmonary arteries Take deoxygenated blood from the heart to the lungs

Pulmonary veins Carry oxygenated blood to the heart

Right atrium This receives blood from the vena cava

Right ventricle Where blood flows to after leaving the right atrium

Semilunar valves Prevent backflow of blood from the arteries into the heart

Systole The contraction of cardiac muscle

Vena cava The main vein

Transport and exchange

AS Diamonds: Cardiac cycle

Transport and exchange AS Diamonds: Cardiac cycle

Transport and exchange AS Diamonds: Cardiac cycle

AS Dominoes: Heart and circulation

Teacher answers

A	Right ventricle	Q	Which chamber of the heart receives deoxygenated blood via the vena cava?
A	Right atrium	Q	Which artery receives blood from the left ventricle?
A	Aorta	Q	During which phase of the cardiac cycle is the cardiac muscle relaxed?
A	Diastole	Q	What type of blood is found in the left side of the heart?
A	Oxygenated	Q	What name is given to the left atrioventricular valve?
A	Bicuspid valve	Q	Which part of the heart separates the left side from the right side?
A	Septum	Q	Which vessels supply oxygenated blood to the cardiac muscle?
A	Coronary arteries	Q	Which type of valve is found in the aorta?
A	Semilunar valve	Q	Which chamber of the heart has the thickest muscular walls?
A	Left ventricle	Q	Which structure delays the passage of impulses to the ventricles?
A	Atrioventricular node (AVN)	Q	Which term means that the cardiac muscle produces impulses to stimulate its own contraction?
A	Myogenic	Q	Which chamber of the heart receives oxygenated blood from the lungs?
A	Left atrium	Q	Which tissue spreads impulses up from the base of the ventricles?
A	Purkyne fibres	Q	Which structures prevent the atrioventricular valves from inverting?
A	Valve tendons	Q	Which vessel carries deoxygenated blood to the lungs?
A	Pulmonary artery	Q	Which type of valves separate the atria and the ventricles?
A	Atrioventricular valves	Q	During which phase of the cardiac cycle is cardiac muscle contracted?
A	Systole	Q	Which circuit of the double circulation flows through the left side of the heart?
A	Systemic	Q	Which structure in the right atrium initiates the heart beat?
A	Sinoatrial node	Q	What is the name of the right atrioventricular valve?
A	Tricuspid valve	Q	Which term describes all the events of a single heart beat?
A	Cardiac cycle	Q	Which term describes the blood in the right side of the heart?
A	Deoxygenated	Q	Which structures contract to tighten the valve tendons?
A	Papillary muscles	Q	Which chamber of the heart pumps blood into the pulmonary artery?

AS Dominoes: Membranes

AS Dominoes: Membranes

AS Dominoes: Membranes

Transport and exchange AS Dominoes: Membranes

Teacher answers

A	a water potential gradient	Q	Active transport occurs
A	through carrier proteins	Q	Active transport requires
A	ATP	Q	A low surface area of membrane
A	decreases rate of diffusion	Q	Small, non-polar molecules diffuse
A	rapidly through the membrane	Q	Fatty acid chains form
A	hydrophobic tails	Q	Facilitated diffusion occurs
A	through hydrophilic channels	Q	Extrinsic proteins are found
A	on the surface of membranes	Q	Intrinsic proteins are found
A	in the bilayer	Q	Simple diffusion occurs
A	through the bilayer	Q	Phospholipids form
A	a bilayer	Q	Glycoproteins are
A	proteins with carbohydrates attached	Q	Facilitated diffusion occurs
A	down a concentration gradient	Q	Large polar molecules diffuse
A	slowly through the membrane	Q	A high surface area of membrane
A	increases rate of diffusion	Q	kPa are the
A	units of water potential	Q	Phosphate and glycerol form
A	hydrophilic heads	Q	Active transport occurs
A	against a concentration gradient	Q	Glycoproteins are found
A	on the surface of membranes	Q	Osmosis is the
A	movement of water only	Q	Diffusion and osmosis are
A	passive processes	Q	Osmosis occurs down

AS Jigsaw: Transport across membranes

Teacher answers

Teacher answers

Friday Afternoon **Biology**

In Stack of Inning Cavities

Cell wal

5 Genes and DNA technology

- A2 Bingo: DNA technology
- AS/A2 Matching: Genetics
- A2 Sequencing: DNA fingerprinting/electrophoresis

Con Con Con Con

- A2 Sequencing: Protein synthesis
- A2 Sequencing: Recombinant DNA technology

Genes and DNA technology

A2 Bingo: DNA technology

DNA polymerase DNA ligase Restriction enzyme Genome Electrophoresis PCR Plasmid

2

Marker gene Clones Sticky end Gene probe Primer Reverse transcriptase Recombinant DNA Somatic gene therapy Germ line gene therapy Oncogene Tumour suppressor gene Mutation Semi-conservative replication

2

DNA polymerase DNA ligase Restriction enzyme Genome Electrophoresis PCR Plasmid Marker gene Clones Sticky end Gene probe Primer Reverse transcriptase Recombinant DNA Somatic gene therapy Germ line gene therapy Oncogene Tumour suppressor gene Mutation Semi-conservative replication

Teacher definitions

Clones Genetically identical cells

DNA polymerase Enzyme that joins nucleotides in DNA synthesis

DNA ligase Enzyme that joins lengths of DNA in gene technology

Electrophoresis Separation technique

Gene probe Locates a specific gene

Genome The genetic make up of an organism

Germ line gene therapy Altering DNA in gametes

Marker gene Used to identify transformed cells

Mutation Change in DNA in a cell

Oncogene A gene that stimulates cells to divide too quickly

PCR Process used to amplify DNA outside the body

Plasmid A vector in gene technology

Primer Marks region of DNA to be amplified

Recombinant DNA DNA from more than one organism

Restriction enzyme Enzyme that cuts at specific base sequences **Reverse transcriptase** Enzyme that produces RNA from DNA

Semi-conservative replication Method by which DNA is copied

Somatic gene therapy Altering DNA in non-sex cells

Sticky end Single-stranded section of DNA

Tumour suppressor gene Gene that prevents cells dividing too rapidly

Y Y Phenotype Parentals Sex linkage 2 Multiple Genotype Locus alleles 2 Sex Reciprocal Gene chromosomes cross

C)	5
-0-		

		Ŷ
Genes carried on the sex chromosomes; inheritance of these genes differs in males and females	Human males; their sperm contain either an X or a Y chromosome	A way of identifying unknown genotypes — often by crossing with a homozygous recessive genotype
A piece of DNA that codes for a polypeptide and determines a specific characteristic	A variant form of a gene	An allele that will only be expressed when homozygous, i.e. no other types of allele are present
A genetic cross carried out involving two genes, often controlling more than one phenotypic characteristic	The original organisms involved in a genetic cross	The first set of offspring from a genetic cross

		30
Human females; all their ova contain a single X chromosome	Where a gene has more than two allele types — although only two can be present in any one organism	In humans, females have two X chromosomes; males have XY
The second set of offspring from a genetic cross — obtained by interbreeding the F1 generation	The specific location of a gene on a chromosome	A genetic cross carried out for only one gene, controlling one phenotypic characteristic
The organism's cells have identical alleles for a gene	The organism's cells have different alleles for a gene	The expression of the genotype and its interaction with the environment

S

Teacher answers

Genes and DNA technology

A2 Sequencing: DNA fingerprinting/electrophoresis .

Start card DNA sample is cloned using PCR

DNA is heated to high temperature so that hydrogen bonds between base pairs break

3

1

2

DNA is cooled and primers are added

4

DNA polymerase and free nucleotides are added

Nucleotides pair up to single strands of DNA by complementary base pairing

6

5

DNA polymerase joins free nucleotides together

7

X

Cycle is repeated until multiple copies of DNA are cloned

Cloned DNA is cut into fragments of different lengths using different restriction enzymes

Fragments are placed into wells and gel electrophoresis is carried out

10

8

9

DNA fragments separate according to size and move towards anode

11

Position of fragments is compared with other samples obtained

12

Å

Matching bands can be used to identify crime suspects, to give a medical diagnosis, and in paternity cases

Genes and DNA technology

A2 Sequencing: Protein synthesis

1 **Start card** Complementary DNA strands separate as the result of hydrogen bonds between base pairs being broken 2 This exposes the bases along each strand Free RNA nucleotides with the bases A, C, G and U are 3 attracted to their complementary bases on one of the exposed strands of DNA The enzyme RNA polymerase moves along the DNA, adding 4 one complementary RNA nucleotide at a time to the newly unwound portion of DNA; in this way the DNA acts as a template against which mRNA is constructed The mRNA detaches from the DNA and the double helix 5 reforms as its complementary base pairs join by hydrogen bonding 6 The mRNA enters the cytoplasm by passing through a pore in the nuclear envelope 7 A ribosome becomes attached to the mRNA

A2 Sequencing: Protein synthesis

Genes and DNA technology

A2 Sequencing: Recombinant DNA technology

1 Start card Sections of DNA with specific genes are identified in donor DNA 2 The desired gene is extracted from the donor DNA using specific restriction enzymes 3 Each restriction enzyme cuts at a specific base sequence 4 The fragment of donor DNA extracted has specific sticky ends 5 A vector, such as a plasmid, is selected to transfer the donor DNA into a host cell 6 The plasmid is treated with the same restriction enzyme used on the donor DNA 7 The plasmid is cut open to produce complementary sticky ends to the donor DNA fragment

A2 Sequencing: Recombinant DNA technology

Friday Afternoon **Biology**

- ♦ A2 Bingo: Ecology
- A2 Dominoes: Ecology
- A2 Jigsaw: Carbon and nitrogen cycles
- A2 Matching: Ecological terms

Ecology

A2 Bingo: Ecology

3		
Intraspecific competition Interspecific competition Niche Habitat Population Community	Trophic level Ecosystem Hypothesis Random sampling Mark-release-recapture Quadrat	Transect Pitfall trap Kick sample Pooter
BIN	GO	
	4	33 51
<u>}</u>		
Intraspecific competition Interspecific competition Niche Habitat Population Community	Trophic level Ecosystem Hypothesis Random sampling Mark-release-recapture Quadrat	Transect Pitfall trap Kick sample Pooter
BIN	GO	
	4	33 51
~		

Teacher definitions

Community

All the populations that live in a particular place at the same time

Ecosystem

The community of living organisms and the biotic factors that affect them

Habitat

The place within an ecosystem where a population lives

Hypothesis

A testable idea to explain an observable event

Interspecific competition

Individuals of more than one species attempt to make use of the same scarce resources

Intraspecifc competition

Individuals of the same species attempt to make use of the same scarce resources

Kick sample

A method of collecting small invertebrates in water

Mark-release-recapture

A method of estimating the population size of motile organisms

Niche

The role an organism has in an ecosystem, including where it lives and what it eats

Pitfall trap

A method of collecting small, motile organisms on land

Pooter

Apparatus for collecting individual, small organisms

Population

All the organisms of the same species living together in a particular habitat

Quadrat

A basic tool for ecological sampling

Random sampling

A method ensuring no bias in the data

Transect

A method used to investigate trends in an area

Trophic level

The position an organism occupies in a food chain

Ecology

Ecology

A2 Dominoes: Ecology

Ecology

A2 Dominoes: Ecology

Ecology

A2 Dominoes: Ecology

Teacher answers

Å	Ecosystem	Q	How energy enters an ecosystem
A	Photosynthesis	Q	The source of all energy in an ecosytem
A	Sunlight	Q	How energy passes along ecosystems
A	Food chain	Q	The position an organism occupies in a food chain
A	Trophic level	Q	How food chains are linked in an ecosystem
A	Food web	Q	Approximate percentage of energy available to the next trophic level
A	10%	Q	Organism at the start of a food chain
A	Producer	Q	Units for pyramids of energy
A	kJ m ⁻² yr ⁻¹	Q	Animal that feeds directly on producers
A	Primary consumer	Q	Approximate percentage of energy wasted between trophic levels
A	90%	Q	Organisms that break down dead material
A	Decomposers	Q	Ways in which energy is lost between trophic levels
A	Excretion, respiration	Q	Units for pyramid of biomass
A	kg m-2	Q	Energy available to the next trophic level
A	Net productivity	Q	Type of pyramid that is always the correct shape
A	Pyramid of energy	Q	How all energy in food chains is eventually dissipated
A	Heat	Q	Gross production – Net production =
A	Respiration	Q	Simplest type of pyramid to produce
A	Pyramid of number	Q	All the organisms of one species in a given area
A	Population	Q	Two reasons why not all sunlight is used for photosynthesis
A	Reflected; misses chlorophyll	Q	Term referring to energy fixed in photosynthesis
A	Gross production	Q	All the living organisms in an ecosystem, interconnected by food webs
A	Community	Q	The role of an organism in its environment
A	Niche	Q	A community of living organisms and the abiotic factors affecting them

A2 Jigsaw: Carbon and nitrogen cycles

Ecology

A2 Jigsaw: Carbon and nitrogen cycles

Ecology

A2 Jigsaw: Carbon and nitrogen cycles

A2 Jigsaw: Carbon and nitrogen cycles

Teacher answers

Ecology

		9.0 1
The name given to each stage in a succession	The role an organism has in an ecosystem, including where it lives and what it eats	Biological features of the environment that have an effect on a population of organisms
Heterotrophs, which obtain nourishment by feeding on other organisms	All the organisms of the same species living together in a particular habitat	Physical and chemical features of the environment that have an effect on a population of organisms
A linked series of living organisms, each of which is the food for the next level, showing energy flow through the ecosystem	The complex interactions between food chains in an ecosystem	An organism producing its own food from simple inorganic materials, e.g. by photosynthesis

Teacher answers

7 Photosynthesis and respiration

- A2 Bingo: Respiration and photosynthesis
- A2 Dominoes: Respiration
- A2 Sequencing: Photosynthesis
- A2 Triominoes: Photosynthesis

Photosynthesis and respiration

A2 Bingo: Respiration and photosynthesis

Metabolic pathway Reduction Oxidation Phosphorylation NAD NADP	Matrix Stroma Thylakoids Cristae Link reaction Glycolysis	Photolysis Pyruvate Ribulose bisphosphate Triose phosphate Lactate
BIN	GO	
	A []	33 51
Metabolic pathway Reduction Oxidation Phosphorylation NAD NADP	Matrix Stroma Thylakoids Cristae Link reaction Glycolysis	Photolysis Pyruvate Ribulose bisphosphate Triose phosphate Lactate
BIN	GO	
	A []	() 33 (51)
م		

Teacher definitions

Cristae Location of oxidative phosphorylation

Glycolysis Conversion of glucose to pyruvate

Lactate Produced in anaerobic respiration

Link reaction Conversion of pyruvate to acetyl CoA

Matrix Location of Krebs cycle

Metabolic pathway Series of reactions controlled by enzymes

NAD Coenzyme in respiration

NADP Coenzyme in photosynthesis

Oxidation Loss of hydrogen or electrons

Phosphorylation Addition of phosphate

Photolysis Splitting of water using light energy

Pyruvate 3-carbon compound

Reduction Gain of hydrogen or electrons

Ribulose bisphosphate 5-carbon compound

Stroma Location of light-independent reactions of photosynthesis

Thylakoids Location of light-dependent reactions of photosynthesis

Triose phosphate Used to form glucose

Teacher answers

A	generates 3 ATP	Q	The Krebs cycle occurs in
A	the matrix	Q	The link reaction
A	produces acetyl coenzyme A	Q	Electrons are gained in
A	reduction	Q	Oxidative phosphorylation occurs
A	on the cristae	Q	Anaerobic respiration in plants and yeast
A	produces ethanol	Q	Reduction is
A	gain of hydrogen	Q	Oxidation is loss of
A	electrons	Q	Oxidative phosphorylation generates most
A	of the ATP	Q	Anaerobic respiration in animal cells
A	produces lactate	Q	Oxidative phosphorylation involves
A	electron carrier proteins	Q	The Krebs cycle involves loss
A	of carbon dioxide	Q	The Krebs cycle generates ATP by
A	substrate-level phosphorylation	Q	Glycolysis is known as the
A	common pathway	Q	Aerobic respiration
A	requires oxygen	Q	Oxidation is
A	loss of hydrogen	Q	Decarboxylation is
A	loss of carbon dioxide	Q	Anaerobic respiration requires no
A	oxygen	Q	Oxygen is
A	the terminal acceptor of electrons	Q	Anaerobic respiration can occur in
A	muscle cells	Q	Glycolysis occurs in
A	the cytoplasm	Q	Reduced FAD
A	generates 2 ATP	Q	Anaerobic respiration generates very little
А	ATP	Q	Reduced NAD

Photosynthesis and respiration

A2 Sequencing: Photosynthesis

Light-dependent reactions

Light-independent reactions

A2 Triominoes: Photosynthesis

Friday Afternoon **Biology**

Solution Nervous and hormonal hormonal control

Nervous and hormonal control

A2 Dominoes: Blood glucose

A2 Dominoes: Blood glucose

A2 Dominoes: Blood glucose

Nervous and hormonal control A2 Dominoes: Blood glucose

Nervous and hormonal control A2 Dominoes: Blood glucose

Teacher answers

A	uptake of glucose by liver cells	Q	β cells
A	secrete insulin	Q	The endocrine region of the pancreas is found in
A	the islets of Langerhans	Q	The endocrine gland is a
A	ductless gland	Q	In glycogenolysis
A	glycogen is hydrolysed to glucose	Q	In gluconeogenesis
A	glucose is formed from non-carbohydrates	Q	α cells
A	secrete glucagon	Q	A fall in blood glucose
A	stimulates glucagon secretion	Q	Glycogen is
A	a storage form of carbohydrate	Q	Glucose is
A	a major respiratory substrate	Q	A hormonal effect is
A	slow-acting and long-lasting	Q	Homeostasis means
A	maintaining a constant internal environment	Q	In type-2 diabetes
A	receptors on liver cells malfunction	Q	Glucagon activates
A	enzymes hydrolysing glycogen	Q	Diabetes mellitus is
A	an inability to regulate blood glucose	Q	Glucagon stimulates
A	conversion of amino acids into glucose	Q	A rise in blood glucose
A	stimulates insulin secretion	Q	Target tissue is the
A	site of hormone action	Q	Glycogenesis is
A	turning glucose into glycogen	Q	Type-1 diabetes is when
A	the pancreas produces insufficient insulin	Q	The endocrine gland
A	secretes hormones	Q	Hormones are
A	chemicals released by the endocrine glands	Q	Insulin activates
А	enzymes turning glucose into glycogen	Q	Insulin increases

Nervous and hormonal control A2 Dominoes: Thermoregulation

Teacher answers

A	Biochemical reactions are too slow	Q	Which structures detect a stimulus?
A	Receptors	Q	What are glands and muscles?
A	Effectors	Q	What is negative feedback?
A	Changes in the environment causing a response to correct the change	Q	What is homeostasis?
A	Maintaining a constant internal environment	Q	What controls the hypothalamus?
A	The autonomic nervous system	Q	Where are the heat loss and conservation centres?
A	Hypothalamus	Q	Which structures detect external temperature changes?
A	Skin thermoreceptors	Q	What are two mechanisms for heat production in endotherms?
A	Increased metabolic rate and shivering	Q	What is vasoconstriction?
A	Narrowing of skin arterioles	Q	What is an ectotherm?
A	An organism whose body temperature fluctuates with the environment	Q	How can heat be lost directly from the skin?
A	Radiation	Q	What are heat conservation mechanisms in endotherms?
A	Vasoconstriction, hair erection	Q	What is an endotherm?
A	An organism that can maintain a constant internal temperature	Q	How does sweating cause heat loss?
A	Evaporation	Q	Which type of organism relies mainly on behavioural methods of temperature control?
A	Ectotherm	Q	What are heat loss mechanisms in endotherms?
A	Sweating, vasodilation	Q	Which type of organism has a more constant metabolic rate?
A	Endotherm	Q	Which hormone causes a rapid increase in metabolic rate?
A	Adrenaline	Q	What are examples of behavioural control of temperature?
A	Basking, burrowing	Q	What type of organism is an example of an ectotherm?
A	Reptile	Q	What hormone causes a long-term increase in metabolic rate?
A	Thyroxine	Q	Why is too high a body temperature dangerous?
A	Enzymes may become denatured	Q	How does increased metabolic rate increase temperature?
Α	Increases respiration, generating heat	Q	What effect will a low body temperature have? —

A2 Jigsaw: Nervous system

Nervous and hormonal control A2 Jigsaw: Nervous system

A2 Jigsaw: Nervous system

Teacher answers

connect neurones within the CNS	detectable change in the environment A motor neurone	detects a stimulus is a gap between neurones
carry impulses from receptors to the CNS	solution sheath is au The mice is a solution of the mice is a solu	əsdeuks v bundle of neurones carries impulses towards the cell body
səuoJnəu AJosuəς souojnəu AJosuəs ed ue to act following a stimulus	uoxe ue punose A gland s an He outst outs	"uoJpuəp ¥ Peripheral nerves carry impulses away from the cell body

Nervous and hormonal control

A2 Sequencing: Nerve impulses and synapses

Resting and action potential

0.5				
7	When a neurone is stimulated at one point, large numbers of Na ⁺ channels open, making the membrane more permeable to these ions			
8	Large numbers of Na ⁺ enter the cell by facilitated diffusion			
9	The inside of the neurone becomes positive compared with the outside			
10	The membrane is polarised			
11	If the threshold is exceeded, an action potential is generated			
12	The potential difference peaks at +40 mV			
16				

A2 Sequencing: Nerve impulses and synapses

A2 Sequencing: Nerve impulses and synapses

Synapse

A2 Sequencing: Nerve impulses and synapses

Classification

- AS Play your cards right: Classification
- AS Matching: Classification

AS Play your cards right: Classification

Classification

AS Play your cards right: Classification

Teacher questions and answers

These have no membrane-bound organelles	. Prokaryotae
These all obtain nourishment by photosynthesis	. Plantae
These never have a cell wall	. Animalia
These may have a slime capsule	. Prokaryotae
These include yeasts	. Fungi
These include <i>E coli</i>	. Prokaryotae
These may be multicellular or unicellular	. Protoctista
These have a nervous system	. Animalia
These include seaweeds	. Protoctista
These have cell walls made of cellulose	. Plantae
These are all saprophytic or parasitic	. Fungi
These have cell walls of peptidoglycan	. Prokaryotae
These may form hyphae	. Fungi
These include mosses	. Plantae
These have cell walls made of chitin	. Fungi
These include liverworts	. Plantae
These include sea anemones	. Animalia
These include blue-green algae	. Prokaryotae
These include <i>Euglena</i>	. Protoctista
These include coral	. Animalia

Classification

AS Matching: Classification

Classification AS Matching: Classification

Y Y A group of The system of similar The correct way giving each organisms that to write the species a generic binomial name can interbreed to and a specific ofhumans produce fertile name offspring 2 The study of the A taxonomic The number of evolutionary group between eukaryotic phylum and history of kingdoms organisms order 2 One of five The number of The kingdom in kingdoms in which kingdoms in the which all all organisms never have cell walls and organisms have current classification no membranecan move in at least bound nucleus one stage in their system life cycle

Classification

2

S-

AS Matching: Classification

	٩ ١	ρ
A taxonomic group between family and species	The kingdom in which all organisms have cellulose walls	The number of prokaryotic kingdoms
The study of biological classification	A taxonomic group between kingdom and class	The incorrect way to write the binomial name of humans
The largest taxon in the classification system	Sorting living organisms into groups	A system in which large groups are split into smaller and smaller ones

9)

9

Teacher answers

Classification AS Matching: Classification

