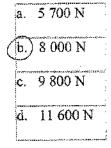
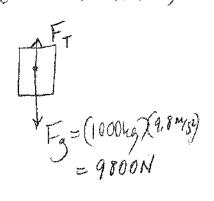
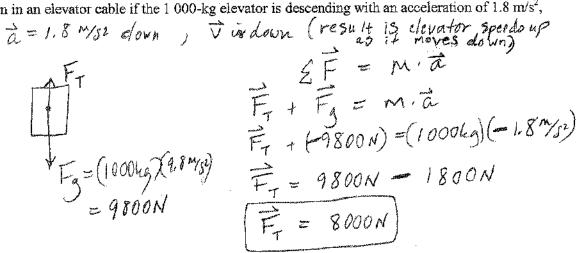

Show all work for credit!

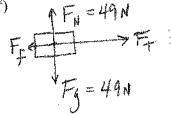
1. As a 3.0-kg bucket is being lowered into a 10-m-deep well, starting from the top, the tension in the rope is/9.8 N. The acceleration of the bucket will be:

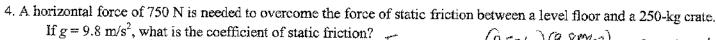

-	6.5 m/s ² wnward.	ener n
17.	9.8 m/s ² wnward.	
c.	ZCIO.	
d.	3.3 m/s² upward.	

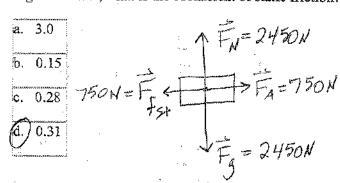

ie, $6.5 \text{ m/s}^2 \text{ upward.}$



2. Find the tension in an elevator cable if the 1 000-kg elevator is descending with an acceleration of 1.8 m/s², downward.






3. A block of mass 5.00 kg rests on a horizontal surface where the coefficient of kinetic friction between the two is 0.200. A string attached to the block is pulled horizontally, resulting in a 2.00-m/s² acceleration by the block. Find the tension in the string. $(g = 9.80 \text{ m/s}^2)$

a. 0.200 N $F_{+}=1$ d. 10.0 N

Fg = m. ag = (5kg) (9.8 m/52)= 49N $F_{g} = 49N$ $F_{g} = 6.2)(49N) = 9.8N$ F+ F= m.a $\vec{F}_{+} + (-9.8N) = (5 \text{kg})(2 \text{M/s}^2)$ $\vec{F}_{+} = 9.8N + 10N = 19.8N = \hat{F}_{+}$

$$F_{g} = M \cdot a_{g} = (250 k_{g})(9.8 \text{ M/s}^{2}) = 2450 \text{ N}$$

$$F_{A} = F_{f} = \mu F_{N}$$

$$750 N = \mu (2450 N)$$

$$M_{SH} = \frac{750 N}{2450 N}$$

5. A horizontal force of 750 N is needed to overcome the force of static friction between a level floor and a 250-kg crate. What is the acceleration of the crate if the 750-N force is maintained after the crate begins to move and the coefficient of kinetic friction is 0.12?

$$F_N = 2450 N$$

$$F_A = 750$$

$$F_S = 2450 N$$

$$F_{N} = 2450N$$

$$F_{F} = 294N$$

$$F_{F} = 294N$$

$$F_{F} = 2450N$$

$$F_{A} = 750N$$

$$F_{A} + F_{F} = M \cdot \vec{a}$$

$$750N + (-294N) = (250kg) \vec{a}$$

$$456N = (250kg) \vec{a}$$

$$\vec{a} = \frac{456N}{250kg} = 1.8 \text{ Mys}_{2} = \vec{a}$$

v Add mass = 0.25 kg

6. Doug hits a hockey puck, giving it an initial velocity of 6.0 m/s. If the coefficient of kinetic friction between ice and puck is 0.050, how far will the puck slide before stopping?

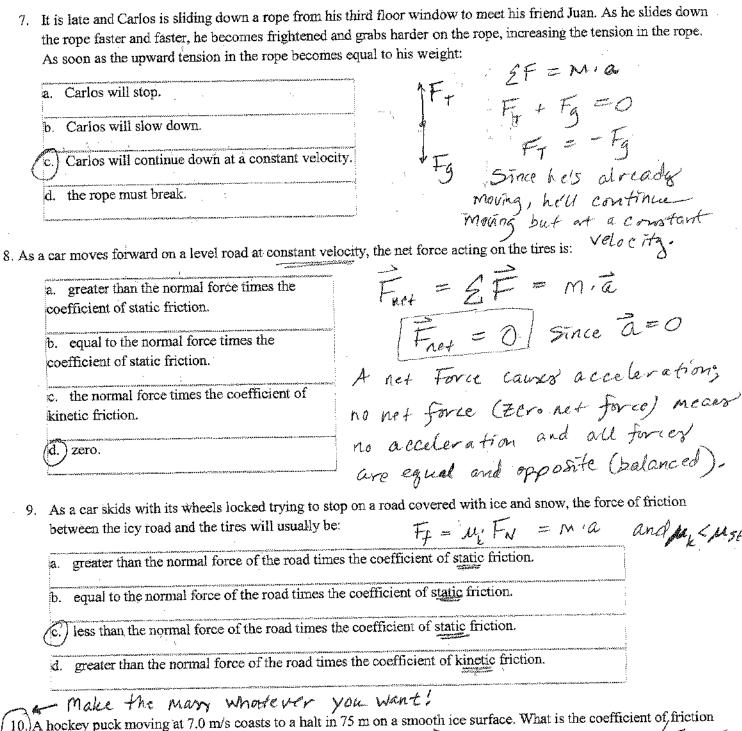
a.
$$19 \text{ m}$$
 $V_1 = 6 \text{ m/s}$ $1 + 1 = 2.45 \text{ M}$

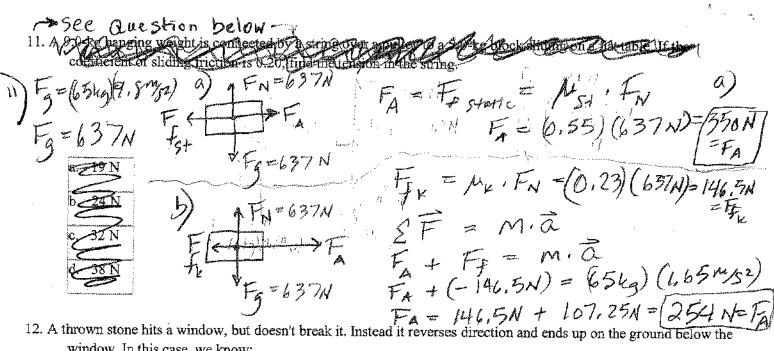
b. 25 m $M_1 = 0.05$ $F_1 = 0.25 \text{ M} (9.8 \text{ m/s}^2)$

d. 57 m $V_2 = 0$ $V_3 = 2.45 \text{ M}$
 $V_4^2 = V_1^2 + 2 \text{ a.d.}$
 $V_4^2 = V_1^2 + 2 \text{ a.d.}$
 $V_4^2 = (6 \text{ m/s})^2 + 2(0.49 \text{ m/s}^2) \text{ d.}$
 $V_4^2 = (6 \text{ m/s})^2 + 2(0.49 \text{ m/s}^2) \text{ d.}$
 $V_4^2 = 36.7 \approx 37 \text{ m.} = 0$

$$F_{f} = \mu F_{N}$$

$$F_{f} = (0.05)(2.45N)$$


$$F_{f} = 0.1225N$$


$$F_{f} = 0.1225N$$

$$F_{f} = 0.1225N$$

$$0.1225N = (0.25kg)$$

$$A = \frac{0.1225N}{0.25kg} = 0.49 \frac{1}{5}$$

window. In this case, we know:

- a. the force of the stone on the glass > the force of the glass on the stone.
- the force of the stone on the glass = the force of the glass on the stone.

Newton's 3rd Lau!

- the force of the stone on the glass < the force of the glass on the stone.
- the stone didn't slow down as it broke the glass.

While helping your friend move his adresser you apply a horizontal force of unknown value Just to get the dresser to initially move. Then once moving, you notice it's easier to push the drosser and therefore push with a different force in order to accelerate the dresser at 1.65 M/s2 as it stided across the floor. If the coefficient of Static friction & 0.55 and the coefficient of kinetic friction is 0.23, Find the a) Force applied just to start the drawer moving and of the force applied to accelerate 7+@165%.