Chemical Formulas: Types of Atoms of atoms Acetylere I. Chemical Analysis A. Qualitative 36n2lhe B. Quantitative C+H Can be represented in 3 ways 1. Empirical Formula: Simplest whole number ratio of the atoms/in a compound 2. Molecular Formula: Actual # of atoms in a molecule 3. Structural Formula \Rightarrow 2-D representation Use the formula based on whether a compound is molecular or ionic What is a molecule? 1 or more atoms that combine to form a single element or compound. Monatomic Elements: **Diatomic Elements:** $$O_2$$, H_2 , N_2 C_1 I_2 I_2 Others: $$O_3$$, P_4 , S_8 ## Compounds: H₂O, CO, CO₂, H₂O₂, NH₃ Molecular compounds are consist of 2 or more non-metals -use moleculear formulas, Ionic compounds: (Salts) consist of a metal and a non-metal and are made up of ions ## Ions: - Electrically charge atom - How do they form? When some atoms react with others, they gain or lose e- The atom that gains e- becomes negative (anion) neutral C1: $$17^+ + 17^- = 0$$ ionized C1: $$17^+ + 18^- = -1$$, C1⁻¹ The atom that loses e- becomes positive (cation) neutral Na: $$11^+ + 11^- = 0$$ ionized Na: $$11^+ + 10^- = +1$$, Na^{+1} The compound that is formed by the joining on Na⁺ and Cl⁻ is not made up of single molecules, but varying amounts of individual ions, : their formulas are empirical No matter how many ions are present in the sample of NaCl, the Na⁺ and Cl⁻ ions always exist in a ratio of 1:1 - Note Total charge of an ionic compound is neutral! - NaCl, MgCl₂- called a formula unit - one can write the formula for any ionic compound if you know the charge on the ions: Practice: a) Mg^{+2} , S^{-2} Mg/S/Magnesium sulfide b) Mg⁺², F⁻¹ Mg (Magnesium buride c) Mg⁺², NO Mg3 V2 Magnesium Nitrid d) Na⁺¹, *(NO₃)⁻¹ 1) Na , (1003) *Polyatomic ion: a group of atoms containing more than 1 element, that act as a single group! f) Al^{+3} , *(SO₄)⁻²