
Forces & Physics Review

Force

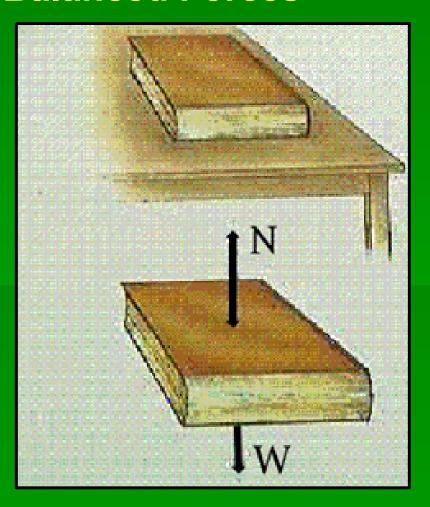
Force

- a push or pull that one body exerts on another
- What forces are being exerted on the football?

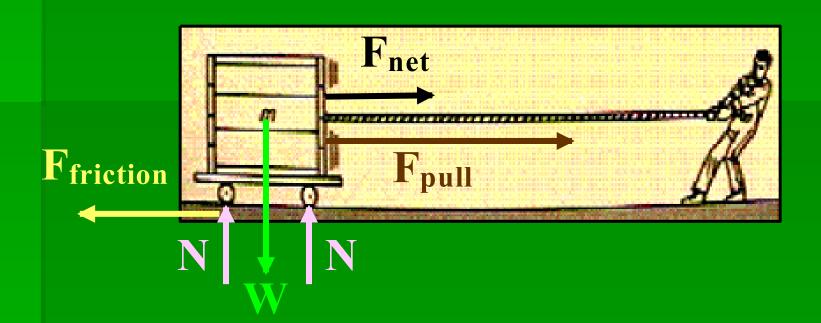
Measuring Forces

Forces are measured in newtons

 $(kg \cdot m/s^2)$.

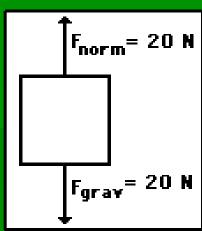

 Forces are measured using a spring scale.

Force


Balanced Forces

- forces acting on an object that are opposite in direction and equal in size
- no change in velocity

Force


- Net Force
 - unbalanced forces that are not opposite and equal
 - velocity changes (object accelerates)

TRUE or FALSE?

The object shown in the diagram must be at rest since there is no net force acting on it.

FALSE! A net force does not cause motion. A net force causes a <u>change</u> in motion, or acceleration.

You are a passenger in a car and not wearing your seat belt.

Without increasing or decreasing its speed, the car makes a sharp left turn, and you find yourself colliding with the right-hand door.

Which is the correct analysis of the situation? ...

- 1. Before and after the collision, there is a rightward force pushing you into the door.
- 2. Starting at the time of collision, the door
- 2. Starting at the time of collision, the door exerts a leftward force on you.
- 4. neither of the above

Friction

Friction

- force that opposes motion between 2 surfaces
- depends on the:
 - types of surfaces
 - force between the surfaces

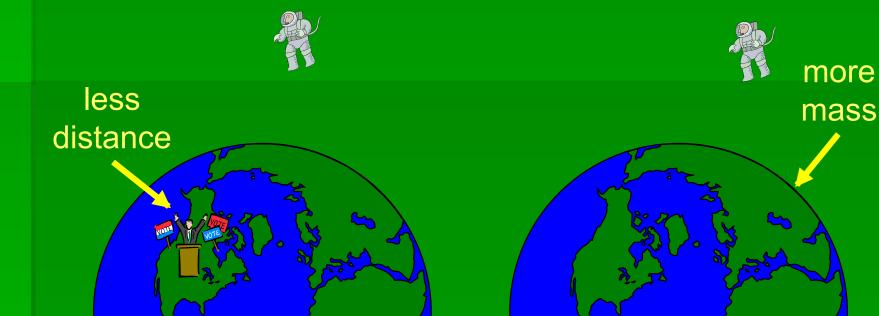
Friction

Four Types of Friction

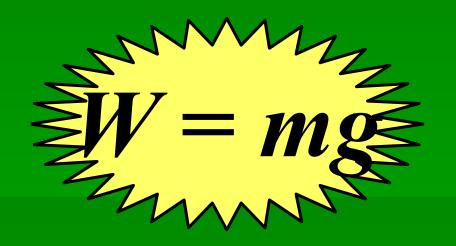
- ✓ Static Friction force that acts on objects that are not moving. (Couch Potato)
- Sliding Friction force that opposes the direction of motion of an object as it slides over a surface. (Ice skating or bobsledding)
- Rolling Friction friction force that acts on rolling objects. (Rollerblading)
- Fluid Friction force that opposes the motion of an object through a fluid. (Planes flying or submarines traveling)

Friction

- Friction is greater...
 - between rough surfaces
 - when there's a greater force between the surfaces (e.g. more weight)



- Gravity
 - force of attraction between any two objects in the universe
 - increases as...
 - mass increases
 - distance decreases


Who experiences more gravity - the astronaut or the politician?

more

Which exerts more gravity the Earth or the moon?

- Weight
 - the force of gravity on an object

W:weight (N)

m:mass (kg)

g:acceleration due to

gravity (m/s²)

MASS

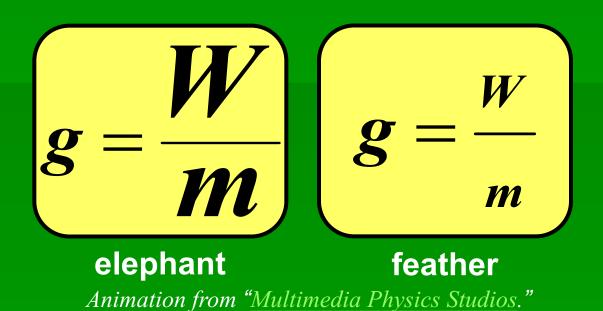
always the same (kg)

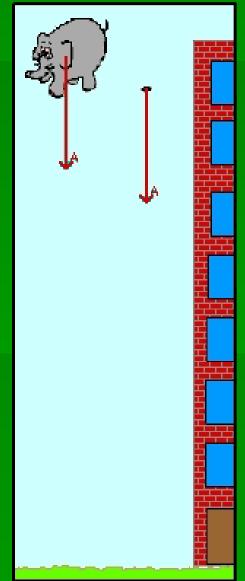
WEIGHT

depends on gravity (N)

Would you weigh more on Earth or Jupiter?

Jupiter because...


greater mass


greater gravity

greater weight

- Accel. due to gravity (g)
 - In the absence of air resistance, <u>all</u> falling objects have the same acceleration!
 - On Earth: $g = 9.8 \text{ m/s}^2$

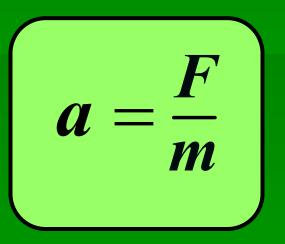
Newton's First Law

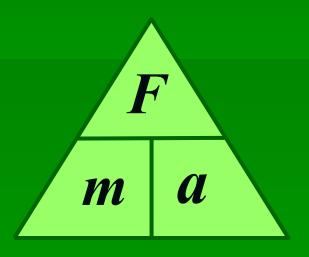
An object at rest will remain at rest and an object in motion will continue moving at a constant velocity unless acted upon by a net force.

Newton's First Law

- Newton's First Law of Motion
 - "Law of Inertia"

Inertia


- tendency of an object to resist any change in its motion
- increases as mass increases


Newton's Second Law

- Newton's Second Law of Motion
 - The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.

$$F = ma$$

Newton's Second Law

 $1 N = 1 kg \cdot m/s^2$

Calculations

What force would be required to accelerate a 40 kg mass by 4 m/s²?

GIVEN:	WORK:
F = ?	F = ma
m = 40 kg	$F = (40 \text{ kg})(4 \text{ m/s}^2)$
$a = 4 \text{ m/s}^2$	
	F = 160 N
m a	

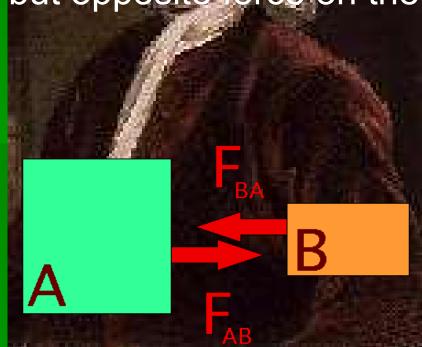
Calculations

A 4.0 kg shotput is thrown with 30 N of force. What is its acceleration?

GIVEN:	WORK:
m = 4.0 kg	$a = F \div m$
F = 30 N a = ?	$a = (30 \text{ N}) \div (4.0 \text{ kg})$
F	$a = 7.5 \text{ m/s}^2$
m	

Calculations

Mr. Keller weighs 745 N. What is his mass?


GIVEN:	WORK:
F(W) = 745 N	$m = F \div a$
m = ?	$m = (745 \text{ N}) \div (9.8 \text{ m/s}^2)$
$a(g) = 9.8 \text{ m/s}^2$	
F	m = 76.0 kg

- Is the following statement true or false?
 - An astronaut has less mass on the moon since the moon exerts a weaker gravitational force.
 - False! Mass does not depend on gravity, weight does. The astronaut has less weight on the moon.

Newton's Third Law of Motion

When one object exerts a force on a second object, the second object exerts an equal but opposite force on the first.

Problem:

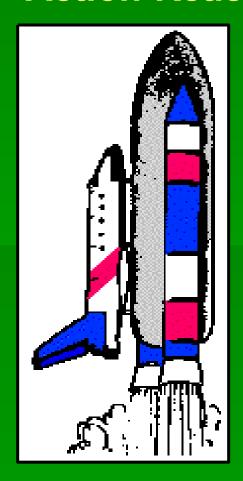
How can a horse
 pull a cart if the cart
 is pulling back on
 the horse with an equal but opposite force?

NO!!!

Aren't these "balanced forces" resulting in no acceleration?

Explanation:

- forces are equal and opposite but act on different objects
- they are not "balanced forces"
- the movement of the horse depends on the forces acting on the horse

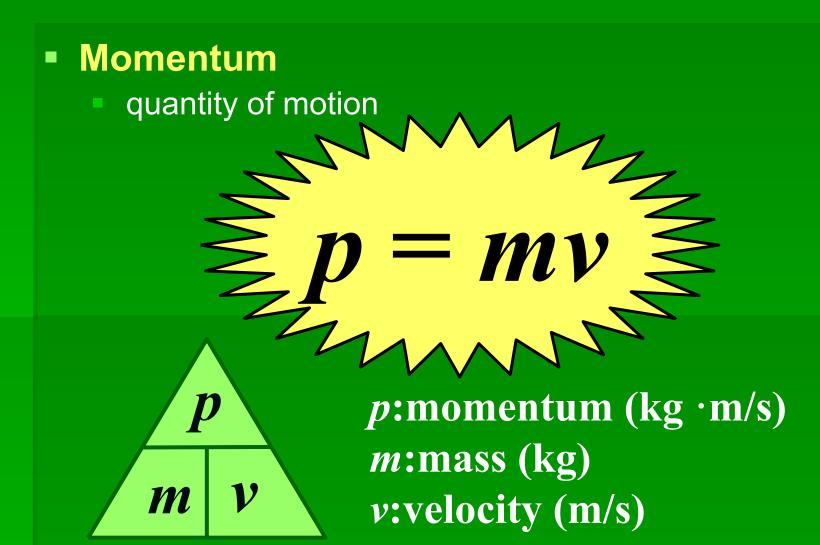


Action-Reaction Pairs

- The hammer exerts a force on the nail to the right.
- The nail exerts an equal but opposite force on the hammer to the left.

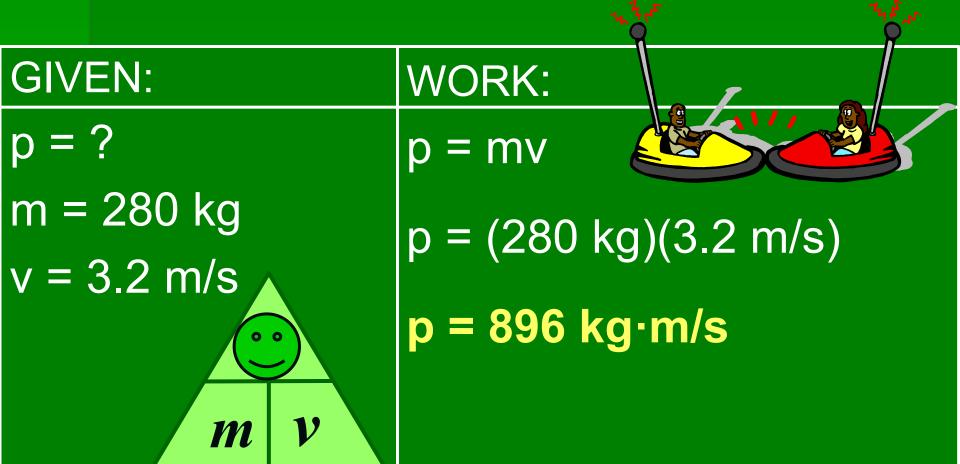
Action-Reaction Pairs

- The rocket exerts a downward force on the exhaust gases.
- The gases exert an equal but opposite upward force on the rocket.


Action-Reaction Pairs

- Both objects accelerate.
- The amount of acceleration depends on the mass of the object.

$$\alpha = \frac{F}{m}$$

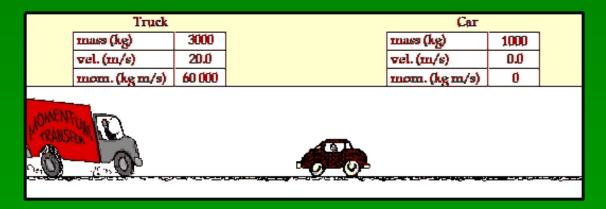

- Small mass ⇒ more acceleration
- Large mass ⇒ less acceleration

Momentum

Momentum

Find the momentum of a bumper car if it has a total mass of 280 kg and a velocity of 3.2 m/s.

Momentum


The momentum of a second bumper car is 675 kg·m/s. What is its velocity if its total mass is 300 kg?

GIVEN:	WORK:
p = 675 kg·m/s	$v = p \div m$
m = 300 kg v = ?	v = (675 kg·m/s)÷(300 kg)
p	v = 2.25 m/s

- Law of Conservation of Momentum
 - The total momentum in a group of objects doesn't change unless outside forces act on the objects.

- Elastic Collision
 - KE is conserved

- Inelastic Collision
 - KE is not conserved

	Diesel				Flatca	r	
Vel.	(km/hr)	5		Vel. (kr	n/hr)	0	
Mor	n. (kg km/hr)	40 000		Mom. (kg km/hr)	0	

 A 5-kg cart traveling at 4.2 m/s strikes a stationary 2-kg cart and they connect. Find their speed after the collision.

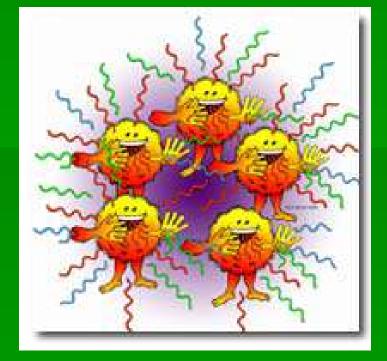
BEFORE	AFTER	
Cart 1: p = 21 kg·m/s m = 5 kg v = 4.2 m/s	Cart 1 + 2: m = 7 kg v = ?	
$\frac{\text{Cart 2}:}{\text{m} = 2 \text{ kg}}$ $\text{v} = 0 \text{ m/s}$	$v = p \div m$ $v = (21 \text{ kg·m/s}) \div (7 \text{ kg})$ $v = 3 \text{ m/s}$	
p _{before} = 21 kg·m/s ——	—— p _{after} = 21 kg⋅m/s	

A 50-kg clown is shot out of a 250-kg cannon at a speed of 20 m/s. What is the recoil speed of the cannon?

BEFORE	AFTER
Clown: $p = 0$	Clown: p = 1000 kg·m/s
m = 50 kg	m = 50 kg
v = 0 m/s	v = 20 m/s
Cannon: p = 0	Cannon: p = -1000 kg·m/s
m = 250 kg	m = 250 kg
v = 0 m/s	v = ? m/s
p _{before} = 0 ———	$p_{after} = 0$

So...now we can solve for velocity.

GIVEN:	WORK:
p = -1000 kg·m/s	$v = p \div m$
m = 250 kg v = ?	v = (-1000kg·m/s)÷(250kg)
	v = - 4 m/s (4 m/s backwards)


Universal Forces

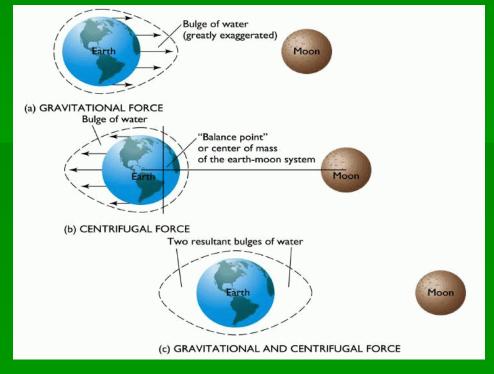
 Electromagnetic Forces – are associated with charged particles. The only force to attract and repel.

Universal Forces

 Nuclear Forces – act within the nucleus of an atom to hold it together, strong and weak.

Universal Forces

- Gravitational Forces attractive forces that act between any two masses.
- "Every object in the universe attracts every other object." – Newton's Law of Universal Gravitation.


Centripetal Force

 Centripetal force is a center-directed force that continuously changes the direction of an object to make it move in a circle. This explains how the moon and satellites stay in orbit

"The Tide Is High..."

The gravitational pull from the moon produces two bulges in the Earth's oceans. One is on the side closest to the moon, and the other is on the side farthest away from

the moon.

