Science

Brunswick School Department Grade 4 Force and Motion

Essential Understandings	 Force can change motion. Cultures have found different technological solutions to deal with needs or problems.
Essential Questions	 What forces can affect the motion of an object? How does weight affect the amount of force needed to move an object? What forces cause resistance? How do machines help us? What are some technological solutions to needs or problems that have been developed by ancient and modern cultures? (e.g., construction, clothing, agricultural tools and methods, computers). What are some examples of simple machines?
Essential Knowledge	 Machines help us do work. The six simple machines are lever, pulley, wheel and axle, screw, incline plane and wedge. Mechanical, electrical, magnetic, friction and gravity are forces that can affect the motion of an object. Heavy objects require more force to move than lighter objects. Sliding, rolling and fluid friction are resistant forces. Inventors and scientists play an important role in finding technological solutions.
Vocabulary	 Terms: work, distance, force, motion, load, resistance, technology, inventor Forces: energy, mechanical, electrical, magnetic, friction (sliding, rolling, fluid), gravity, inertia Simple Machines: lever, pulley, wheel and axle, screw, incline plane, wedge
Essential Skills	 Identify various types of forces (mechanical, electrical, magnetic, friction, gravity). Recognize different types of resistant forces (weight and friction). Create a table or graph to demonstrate how a simple machine can make work easier. Create a machine designed to solve a problem. Evaluate and present the effectiveness of the process and the product. Predict and use measurement to determine how distance is affected by size, weight, and speed.

Brunswick School Department Grade 4 Force and Motion

Science

A. Unifying Themes

A3. Constancy and Change

Students identify and represent basic patterns of change in the physical setting, the living environment, and the technological world.

b. Make tables or graphs to represent changes.

A4.Scale

Students use mathematics to describe scale for man-made and natural things.

- a. Measure things to compare sizes, speeds, times, distances, and weights.
- B. The Skills and Traits of Scientific Inquiry and Technological Design B2.Skills and Traits of Technological Design

Students use a design process, simple tools, and a variety of materials to solve a problem or create a product, recognizing the constraints that need to be considered.

a. Identify and explain a simple design problem and a solution related to the problem.

- Propose a solution to a design problem that recognizes constraints including cost, materials, time, space, and safety.
- c. Use appropriate tools, materials, safe techniques, and quantitative measurements to implement a proposed solution to a design problem.
- d. Balance simple constraints in carrying out a proposed solution to a design problem.
- e. Evaluate their own design results, as well as those of others, using established criteria.
- f. Modify designs based on results of evaluations.
- g. Present the design problem, process, and design or solution using oral, written, and/or pictorial means of communication.
- C. The Scientific and Technological Enterprise

C2.Understnadings About Science and Technology

Students describe why people use science and technology and how scientists and engineers work.

b. Describe how engineers seek solutions to problems through the design and production of products.

Related Maine Learning Results

Brunswick School Department Grade 4 Force and Motion

	D. The Physical Setting
	D4.Force and Motion
	Students summarize how various forces affect the motion of
Related	objects.
Maine Learning	a. Predict the effect of a given force on the motion of an object.
Results	b. Describe how fast things move by how long it takes them to
	go a certain distance.
	d. Give examples of how gravity, magnets, and electrically
	charged materials push and pull objects.
	 Locate examples of simple machines in the real world.
Sample	 Design an experiment to show how force effects motion (ex. a
Lessons	block sliding over sandpaper vs. a smooth surface).
And	 Select a scientist and describe how he/she used a simple machine
Activities	to contribute to our society.
	Create a simple machine.
Sample	 Make a diagram showing how force can change the motion of an
Classroom	object.
Assessment	Design, plan and build an invention that helps solve a problem.
Methods	
	Publications:
	 Gear Up - Keith Good
	 Inclined Planes and Wedges - Sally Walker
	 Machines and How they Work - Harvey Weiss
	 Movement - Brenda Walpole
	 Pulleys - Sally Walker
	 Simple Machines - Deborah Hodge
Sample	 Simple Machines - Anne Horvatic
Resources	 Simple Machines - Fran Whittle
	 So You Think You Want To Be An Inventor - Judith St.
	George
	 Wheels and Axels - Sally Walker
	■ <u>Videos</u> :
	 All About Simple Machines
	 Friction and Simple Machines
	 Simple Machines a First Look