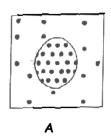

INTRODUCTION

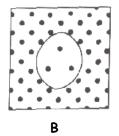
Soaking eggs in vinegar removes the calcium from the eggshells, making them soft and exposing the chorionic membrane which surrounds the developing chicken embryo and the food molecules stored in the egg to help the embryo grow.

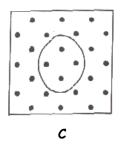
MODELING OSMOSIS:

ADD DOTS representing solute molecules to the diagrams provided below to show where solute molecules could be found AT THE START of this experiment when you put the eggs in the cups and covered them with liquid. If solute molecules are unable to pass through a cell membrane water will move to try and equalize the concentration. ADD ARROWS to the diagrams to show how you think the water will move.

EGG IN SUGAR WATER


EGG IN DISTILLED WATER


N	۱AK	Έ	A	H)	/PC)TH	IESIS:
---	-----	---	---	----	-----	-----	--------

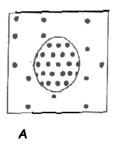

wilai	uo	you	mink	wiii	napper	1 10	me	eggs	111	11113	experii	nem:	LAFL	4T14 /	/V F17	you	min	30.	

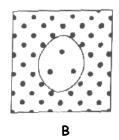
Tell 2 ways the membrane surrounding the egg is like the plasma membrane	in a cell.
1	

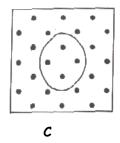
2							
Tell a molecule in the egg that might not be able to cross the membrane and explain WHY?							
COLLECT DATA:							
	Egg in sugar water	Egg in distilled water					
Mass of egg (g) at the start							
Mass of egg (g) after 24 hours							
Total change in mass (g) from Day 1 to Day 3 Use + if it got bigger Use - if it got smaller							
ANALYZE THE DATA: What happened to the egg in the sugar water		·					
What happened to the egg in the distilled w Which molecule was moving to make the egg		·					
The movement of WATER ACROSS A SEMI concentration to a region of LOWER concent		•					
The sugar water solution in the beaker was	compared t	o the egg? (CIRCLE ONE)					
hypoto	onic hypertonic isotonic						
The distilled water in the beaker was	compared to	the egg? (CIRCLE ONE)					
hypotonic	hypertonic isotonic						
*******	*******	******					
Solute is represented by black dots in the c	liagrams below.						

WHICH DIAGRAM REPRESENTS THE EGG PLACED IN THE SUGAR WATER? A B C

WHICH DIAGRAM REPRESENTS THE EGG PLACED IN THE DISTILLED WATER? A B C


MODELING AN AQUATIC ORGANISM:


Homeostasis is critical for maintaining conditions for life. Animals that live in aqueous environments must maintain the balance of water and ions in their bodies (osmoregulation). You will use dialysis tubing (artificial membrane) to MODEL what happens to "fish" in different environments.



CHECK THE "DIALYSIS TUBE FISH"

wnat	nappened to the dialysis t	tube tish placed	in the sait water?
	Grew bigger	Shrank smaller	Stayed same size
What	happened to the dialysis	tube "fish" placed	in the fresh (distilled) water?
	Grew bigger	Shrank smaller	Stayed same size
****	*******	*****	*******
The so	alt water solution in the b	eaker was	compared to the "fish". (CIRCLE ONE)
		hypotonic	hypertonic isotonic
The fi	resh water solution in the	beaker was	compared to the "fish". (CIRCLE ONE)
		hypotonic	hypertonic isotonic
****	******	*****	***********
Salute	is represented by black (dats in the diagra	ms helow

WHICH DIAGRAM REPRESENTS THE "FISH" PLACED IN THE SALT WATER? A B C

WHICH DIAGRAM REPRESENTS THE "FISH" PLACED IN THE FRESH WATER? A B C

Science and Engineering Practices	Cross Cutting Concepts
A. Developing and Using Models	A. Patterns
B. Planning and Carrying Out Investigations	B. Energy and Matter
C. Using Mathematical and Computational Thinking	C. Structure and Function
D. Constructing Explanations and Designing Solutions	D. Stability and Change
E. Obtaining, Evaluating, and Communicating Information	E. Cause and Effect
F. Asking Questions and Defining Problems	F. Systems and System Models
G. Engaging in Argument from Evidence	G. Scale, Proportion, and Ouantity

A. Developing and Using Models:

- **Physical model** is a smaller/larger simpler **physical representation** of the thing being studied. The object being modelled may be small (an atom) or large (the Solar System). Example: Model airplane
- Conceptual models is a representation of a system, made of the composition of concepts which are used to help people know, understand, or simulate a subject the model represents. Diagrams, word webs, or concept maps can be used to explain a phenomenon or event.
- **Mathematical models** are sets of equations that take into account many factors to represent a phenomenon. For example: meteorologists use computer models to make predictions about weather patterns.

<u>IDENTIFY 2 KINDS OF MODELS</u> you used in this lab, explain what was being modeled, and which science concepts the models represented.

MODEL 1:			
_			

MODEL 2:			
_			

Tell how the molecules are moving in the examples below:

	OSMOSIS	DIFFUSION	
A student passes s smelled across the			
•	e bathtub for hours wa ausing it to wrinkle up	ter 	· · · · · · · · · · · · · · · · · · ·
-	o rows ahead of you in erfume this morning.	class	
• •	d of slugs in your garde em so they shrivel up a		
Yum! Something sn neighbors are cool	_		
throat causes wat	water when you have a er in your swollen throa he cells shrink and hurt	t cells to	
. •	move from the air sacs ell membranes into the l		
The Hy-Vee spray produce isle to "pl	vs water on the veggies ump them up"	in the	