Extra Credit Information for Dihybrid Crosses

(This gives you information about how to do these types of crosses.)

DIHYBRID CROSSES (2 traits)

Mendel also asked the question?

Does the gene that determines if a seed is round or wrinkled have anything to do with the gene for seed shape?

Must a seed that is yellow also be round?

MAKING A CROSS with

TWO gene traits

DIHYBRID CROSS

A Punnett square for a DIHYBRID CROSS looks like this:

LET'S MAKE A DIHYBRID CROSS

HOMOZYGOUS

HOMOZYGOUS

YELLOW ROUND

GREEN WRINKLED

RRYY

rryy

- 1. Figure out what parent alleles are
- 2. Choose correct Punnett square size
- 3. Put in possible parent gametes
- 4. Fill in boxes with offspring combinations
- 5. Determine probabilities of phenotypes & genotypes

LAW OF INDEPENDENT ASSORTMENT

the factors are distributed to gamet independently of other factors

PRACTICE MAKING GAMETES

WHAT ARE THE POSSIBLE GAMETES THIS PARENT CAN MAKE?

HOMOZYGOUS ROUND YELLOW

Each gamete should get one of each kind of gene

RRYY

RY RY $\mathbf{R} \mathbf{Y}$ RY

PRACTICE MAKING GAMETES

WHAT ARE THE POSSIBLE GAMETES THIS PARENT CAN MAKE?

HOMOZYGOUS WRINKLED GREEN

Each gamete should get one of each of gene

rryy

ry

PRACTICE MAKING GAMETES

WHAT ARE THE POSSIBLE GAMETES THIS PARENT CAN MAKE?

HETEROZYGOUS ROUND YELLOW

Each gamete should get one of each kind of gene

RrYy

RY

 $\mathbf{r}\mathbf{y}$ $\mathbf{r}\mathbf{Y}$

Ry

RrYv RrYv RrYv RrYy RY RrYy RrYy RrYy **RrYy** RY RrYy RrYy RY. RrYy RrYv RrYy RrYy RrYy RrYy RY

100% of offspring = RrYy genotype ROUND YELLOW phenotype

MAKE ANOTHER CROSS

HETEROZYGOUS ROUND YELLOW ROUND YELLOW

RrYy RrYy

POSSIBLE PARENT GAMETES?

	RY	Ry	rY	ry	
RY	RRYY	RRYy	RrYY	RrYy	9 Round & Yellow
Ry	RRYy	RRyy	RrYy	Rryy	3 Round & green
rY	RrYY	RrYy	rr¥Y	ггҮү	3_ Wrinkled & yellow
ry	RrYy	Rryy	гтҮу	rryy	1 wrinkled & green
Sign of a	hete	rozyg	ous di	hybri	d cross is a

		•	; dominant	
	dominant	_ TRAIT 1;	recessive	_TRAIT 2
_3	_recessive	_TRAIT 1;	dominant	_TRAIT 2
1	recessive	_TRAIT 1;	recessive	TRAIT 2
			clue that it	
	<u>retrkóz</u>	<u>YGOUS T</u>	TWO gene	cross

PRACTICE MAKING GAMETES for DIHYBRID CROSSES

9:3:3:1 ratio in offspring.

Results

Found-ye lists tround-green : wtinkled-ye lists : wrinkled-green

9:3:3:3:1

http://www.emc.maricopa.edufacuttyffarabee/BIOBK/BIoBookTDC.New

What are the possible gametes?

pure round & pure tall = RRTT

RT RT RT RT
What gametes can it produce?

What are the possible gametes?

Heterozygous Tall = $\frac{\mathbf{T} \mathbf{t} \mathbf{R} \mathbf{R}}{\mathbf{k}}$ pure round \mathbf{k}

TR tR tR TR
What gametes can it produce?

What are the possible gametes?

Hybrid tall = $\frac{\mathbf{T} \mathbf{t} \mathbf{r} \mathbf{r}}{\mathbf{k}}$ pure wrinkled $\mathbf{k} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}$

Tr tr tr Tr
What gametes can it produce?

What are the possible gametes?

Heterozygous tall = $\frac{\mathbf{T} \mathbf{t} \mathbf{R} \mathbf{r}}{\mathbf{k}}$ hybrid round \mathbf{k}

TR tr tR Tr
What gametes can it produce?

SOUTH DAKOTA CORE SCIENCE STANDARDS

LIFE SCIENCE:

Indicator 1: Understand the fundamental structures, functions, classifications, and mechanisms found in living things

9-12.L.1.1. Students are able to relate cellula. functions and processes to specialized structures within cells.

Storage and transfer of genetic information

Core High School Life Science Performance Descriptors

High school students performing at the ADVANCED level:	predict how traits are transmitted from parents to offspring
High school students performing at the PROFICIENT level:	explain how traits are transmitted from parents to olispring;
High school students performing at the BASIC level	identify that genetic traits can be transmitted from parents to offspring;

SOUTH DAKOTA ADVANCED SCIENCE STANDARDS

LIFE SCIENCE:

Indicator 2: Analyze various patterns and products of natural and induced biological change.

9-12.L.2.1A. Students are able to predict the results of complex inheritance patterns involving multiple alleles and genes. (SYNTHESIS)

Examples: human skin color, polygenic Inheritance