Exponential Growth and Decay Problems 3

1) On January 1, 1999, the price of gasoline was \$1.39 per gallon. If the price of gasoline increased by 0.5% per month, what was the cost of one gallon of gasoline, to the nearest cent, on January 1 one year later?

$$y = 1.39 (1+.005)^{x}$$
 $y = 1.39 (1+.005)^{x}$
 $y = 1.4757...$

1 year is 12 months
 $y = 1.4757...$

2) The height of a bouncing ball (measured in inches) after x bounces is represented by the equation $f(x) = 120(0.75)^x$. About how many times higher is the first bounce than the fifth bounce?

1st bounce:
$$y = 120(.75)^{1}$$

= 90 ft.
5m bounce: $y = 120(.75)^{5}$
= 28, 4765...ft

28.476...
First bounce is
About 3 times
higher than
5th bounce

- 3) A new \$26,000 car depreciates by 12% every year.
 - a) Write an equation that shows the cost of the car, y, at year x.

$$y = 26,000 (1-.12)^{x}$$
 or $y = 26,000 (88)^{x}$

b) How much will the car be worth in 6 years?

c) How long will it take for the car to be worth less than \$100?

d) Some people buy used cars so that the value of the car doesn't depreciate so quickly. Does this make sense? Explain your thinking.

yes! A can that is used will be less expensive of it will therefore not loss as much value.

new years as much value.

4) The Franklins inherited \$15,000, which they want to invest for their child's future college expenses. If they invest it at 3.25% with interest compounded monthly, determine the value of the account, in

dollars, after 5 years. Use the formula $y = a(1 + \frac{r}{r})^{nx}$ where y = value of the investment after x years, a = initial value (principal invested), r = annual interest rate, and n = number of times compounded per r = .0325, n = 12, a = 15,000, t = 5

- 5) You invest \$10,000 in an account with 1.250% interest, compounded quarterly. Assume you don't touch the money or add money other than the earned interest.
 - a) Write an equation that gives the amount of money, y, in the account after x years.

$$y = 10,000 \left(1 + \frac{0125}{4}\right)^{4x}$$

b) How much money will you have in the account after 10 years?

c) How much money will you have in the account after 25 years?

$$y = 10,000 (1 + .0125(425)$$

= $13.661.72089$