IB Mathematics: The Exploration Feedback to Student /20

Name:

Date set: Date submitted:

A: Communication /4

- **0:** The exploration **does not** reach the standard described by the descriptor below.
- 1: The exploration has some coherence.
 - Some coherence but not well organized, or some organization but not coherent.
 - No aim or rationale.
 - Key explanations missing.
 - Diagrams (if included) do not aid in the explanation.
- 2: The exploration has **some** coherence and shows **some** organization.
 - Perhaps no (or weak) conclusion and/ or introduction.
 - Some mathematical and/or non mathematical explanations are missing
 - Coherent but not well organized, or well-organized but not coherent.
 - May included aim or rationale.
 - Aim doesn't "fit" the rest of the paper.
 - Some terms undefined
 - Repetitive work and/or calculations.
 - Tables, diagrams, graphs etc may not be explained.
 - The diagrams may not aid the explanation very much.
 - This is the highest achievement if a Q and A format is used.
- 3: The exploration is coherent and well organized.
 - Solid introduction and conclusion
 - Most mathematical and/or non mathematical explanations are clear.
 - Aim and rationale included
 - Repetitive calculations.
 - Aspects need clarification.
 - Diagrams, graphs, tables etc included, explained and aid in the exploration.
 - Lacks conciseness (could be huge detracting tables that should be in an appendix.)
 - Typing errors may detract from the flow.
 - May include irrelevancies (hence lack of conciseness.)
 - References included.
- **4:** The exploration is coherent, well organized, concise and complete.
 - Strong introduction (which includes the context of the exploration) and conclusion
 - Mathematical and/or non mathematical explanations are clear and concise.
 - Includes rationale (why topic chosen) and aim which is clearly identifiable.
 - Exploration is logically developed.
 - All appropriate avenues explored.
 - Graphs and tables are appropriately placed within the exploration, extra large tables are summarized in paper and then added in an appendix
 - Easy to follow (written for a peer audience)
 - Proper citations and referencing where appropriate.

B: Mathematical Presentation /3

- **0:** The exploration **does not** reach the standard described by the descriptor below.
- **1:** There is **some** appropriate mathematical presentation.
 - Poor or minimal use of notation, terminology, and/or mathematical symbols.
 - References to color, yet printed in black and white.
 - Diagrams, tables, graphs etc may be unrelated.
 - Missed opportunities to show mathematical language.
 - Paper is descriptive rather than mathematical
 - Lack of appropriate ICT (information and communication technology) tools for the task.

2: The mathematical presentation is **mostly** appropriate.

- Inconsistency of terminology and/or variables.
- Some key terms and variables defined
- Mostly correct use of mathematical language, terminology, symbols and notation (no *, or ^) use
 of approximate ≈ instead of equal, appropriate use of subscripts etc.
- Some appropriate use of ICT tools for the task.
- Some Graphs, diagrams etc are clear and appropriately scaled (zoomed in/out) and labeled for clear communication. (ie. Some wasted space on the graph by poor choice of domain and range)

3: The mathematical presentation **is** appropriate **throughout**.

- Key terms and variables explicitly defined.
- Correct use of mathematical language, terminology, symbols and notation (no *, or ^) use of approximate ≈ instead of equal, appropriate use of subscripts etc.
- Appropriate and varied forms of mathematical representation used (formulae, diagrams, tables, charts, graphs, models)
- Appropriate ICT tools are used for the task (ie, spreadsheet, GDC, Geogebra, pencil and ruler, etc.)
- Appropriate degrees of accuracy for situation.
- Discrete versus continuous data clearly articulated if applicable.
- Graphs and diagrams appropriately labeled and scaled (zoomed in/out) for clear communication.

C: Personal Engagement /4

- **0:** The exploration **does not** reach the standard described by the descriptor below.
- 1: There is evidence of **limited** or **superficial** personal engagement.
 - Student created examples may exist.
 - Unfamiliar math is quoted and not explained.
 - Unsupported mathematics.
 - Missed opportunities to explore.
 - Minimal independent thinking.
 - Minimal personal interest.
- **2:** There is evidence of **some** personal engagement.
 - Student created examples but may not have been followed through.
 - Student applies some unfamiliar mathematics and some research into it has taken place.
 - Some independent thinking has occurred but limited
 - Some personal interest shown but limited
- **3:** There is evidence of **significant** personal engagement.
 - Student created examples exist.
 - Student explores and applies math.
 - Some evidence of personal interest
 - Some personal involvement.
 - Student shows independent thinking.
 - Some research has been undertaken.
- **4**. There is **abundant** evidence of **outstanding** personal engagement.
 - Works independently.
 - Creates strong personal examples
 - Thinks creatively.
 - Demonstrates personal interest
 - Present mathematical ideas in your own way.
 - Looks for and creates mathematical models for real-world situations (if applicable)
 - Asks questions, makes conjectures, investigates mathematical ideas.
 - Researches the area of interest.
 - Considers different perspectives (historical or global or local)
 - Actively explores, learns, applies and describes unfamiliar (yet appropriately challenging) mathematics.
 - Shows independent thinking.
 - Highly original work.
 - Shows personal ownership of the work.
 - Asks questions to explore and explores them.
 - Passion and interest is abundant in the overall read of the paper.

D: Reflection /3

- **0:** The exploration **does not** reach the standard described by the descriptor below.
- 1: There is evidence of **limited** or **superficial** reflection.
 - Very limited, simple and superficial reflection.
 - Opportunities for reflection were not taken.
 - Some questions raised.
- 2: There is evidence of meaningful reflection.
 - Student makes connections and links to other mathematical ideas.
 - Some questions raised.
 - Implications of the results are considered.
 - Reflection on results and findings
 - Accuracy and reasonableness considered.
 - Reflection is meaningful (but not critical)
 - A limited discussion on possible limitations (and/or extensions, improvements)
 - Not enough questions are raised. What if I did....
- **3:** There is substantial evidence of **critical** reflection.
 - Discusses the implications of results.
 - Accuracy and reasonableness considered and discussed.
 - Considers the significance of the findings and results.
 - Possible limitations (and/or extensions, improvements)
 - Connections or links to other fields and mathematical areas.
 - Choices of approach are considered and evaluated along the process.
 - Critical reflection demonstrated throughout (if applicable) and in conclusion.
 - Considers personal examples and work.
 - Mathematical difficulties, problems and contradictions discussed.
 - Critical reflection on what has been learned.
 - Insightful questions raised. What if I

E: Use of Mathematics /6

- **0:** The exploration **does not** reach the standard described by the descriptor below.
 - There is no use of mathematics.
 - No mathematical strategy used.
 - Descriptive not mathematical in nature.
- 1: Some relevant mathematics is used.
 - Mathematics is not at SL level
 - Elementary mathematical strategies used.
 - Largely descriptive with some mathematics.
- 2: Some relevant mathematics is used. Limited understanding is demonstrated.
 - Mathematics is not at SL level
 - Limited demonstration of understanding.
 - Can apply the methods without elaboration.
 - There is some correct mathematics.
- **3:** Relevant mathematics commensurate with the level of the course is used. Limited understanding is demonstrated.
 - Mathematics is in the syllabus, at a similar level or beyond.
 - Limited demonstration of understanding.
 - Can apply the methods without elaboration.
 - There is some correct mathematics.
- **4:** Relevant mathematics commensurate with the level of the course is used. The mathematics explored is **partially** correct. **Some** knowledge and understanding are demonstrated.
 - Some demonstration of understanding of "why"
 - Can apply the method but not the deeper why.
 - The mathematics is partially correct.
 - Some connections or links made to other areas of mathematics.
- **5:** Relevant mathematics commensurate with the level of the course is used. The mathematics explored is **mostly** correct. **Good** knowledge and understanding are demonstrated.
 - Mathematics is understood.
 - Correctly explores the mathematics from various perspective or angles.
 - Applies some problem solving techniques
 - Where appropriate patterns are recognized and explained.
 - Applies mathematics in different contexts.
 - A sophistication of mathematics is shown.
 - Identifying links to different areas of mathematics.
 - Contains mathematical rigor.
 - Mathematics is mostly error-free and uses appropriate level of accuracy most of the time.
- **6:** Relevant mathematics commensurate with the level of the course is used. The mathematics explored **is correct**. **Thorough** knowledge and understanding are demonstrated.
 - Mathematics is fully understood.
 - Applies problem solving techniques
 - Is mathematically rigorous.
 - Clarity of mathematical language and logic when making mathematical arguments and calculations.
 - Precise mathematics is error-free and uses appropriate level of accuracy at all times.

Compiled by Munich International School Mathematics Department
Buchanan, Laurie et al. *Mathematics Standard Level*. Oxford, U.K.: Oxford University Press, 2012.
"Examples of Explorations." *IBO.org*. International Baccalaureate Organization. n.d. Web. 25 March 2013.