AP Calculus Exam Prep Assignment #5 Name

1) A solution curve has been superimposed on the slope fields at the right. The solution is for the differential equation and initial condition:

6) Suppose we plot a particular solution of $\frac{dy}{dx} = 4y$ from initial point (0,1) using Euler's method. After one step of size $\Delta x = 0.1$, how big is the error?

$$\frac{dy}{dx} = 4y \Rightarrow \frac{dy}{y} = 4dx \Rightarrow \int \frac{dy}{y} = 4\int dx \Rightarrow \ln y = 4x + C \quad \ln(1) = 4(0) + C \Rightarrow C = 0$$

$$\ln y = 4x \Rightarrow y = e^{4x} \quad y = e^{4(0.1)} \approx 1.4918 \quad \Delta y \approx 4y \Delta x \approx 4(0.1) = 0.4 \quad \text{Error} \approx 0.0918$$

AP Calculus Exam Prep Assignment #5 page 2

7)
$$A = Pe^{rt}$$
 40000 = $Pe^{.08(35)} \Rightarrow P = \frac{40000}{e^{.08(35)}} = 2432.41 C)

8)

$$\frac{dy}{dt} = -0.11(y - 68) \Rightarrow \frac{dy}{y - 68} = -0.11dx \Rightarrow \int \frac{dy}{y - 68} = \int -0.11dx \Rightarrow \ln|y - 68| = -0.11x + C$$

$$\ln|180 - 68| = -0.11(0) + C \Rightarrow C = \ln 112 \quad y = e^{-0.11x + \ln 112} + 68 = 112e^{-0.11x} + 68$$

$$y(10) = 112e^{-1.1} + 68 \approx 105.28$$

9)

$$\frac{dy}{dt} = ky \Rightarrow \frac{dy}{y} kdt \Rightarrow \int \frac{dy}{y} = \int kdt \Rightarrow \ln y = kt + C \quad \ln 40 = k(0) + C \Rightarrow C = \ln 40$$

$$y = e^{kt + \ln 40} = 40e^{kt} \quad 10 = 40e^{k(2)} \Rightarrow e^{2k} = \frac{1}{4} \Rightarrow 2k = \ln\left(\frac{1}{4}\right) \Rightarrow k = \frac{\ln(1/4)}{2} = \ln(4^{-1})^{1/2} = -\ln 2$$
A)

For problems 10-15, use the slope fields provided on the next page. 10) Which slope field is for the differential equation y' = y? C) III

11) Which slope field is for the differential equation $y' = \frac{-x}{y}$? **D)** IV

- 12) Which slope field is for the differential equation $y' = \sin x$? B) II
- 13) Which slope field is for the differential equation y' = 2x? E) V
- 14) Which slope field is for the differential equation $y' = e^{-x^2}$? A) I
- 15) A particular solution curve of a differential equation whose slope field is shown in II passes through the point (0,-1). Its equation is:

$$\frac{dy}{dx} = \sin x \Rightarrow dy = \sin x \, dx \Rightarrow \int dy = \int \sin x \, dx \Rightarrow y = -\cos x + C$$

$$D$$

AP Calculus Exam Prep Assignment #5 page 4

Problems: Solve the following WITHOUT the use of a calculator.

16) A certain rumor spreads through a community at the rate of $\frac{dy}{dt} = 2y(1-y)$, where y is the proportion of the population that has heard the rumor at time t.

A) What proportion of the population has heard the rumor when it is spreading the fastest?

- B) If at time t = 0, ten percent of the people have heard the rumor, find y as a function of t.
- C) At what time *t* is the rumor spreading the fastest?
- 17) Let v(t) be the velocity, in feet per second, of a skydiver at time t seconds, $t \ge 0$. After her parachute opens, her velocity satisfies the differential equation $\frac{dv}{dt} = -2v 32$ with initial condition v(0) = -50.
 - A) Use separation of variables to find an expression for v in terms of t, where t is measured in seconds.
 - B) Terminal velocity is defined as $\lim_{t\to\infty} v(t)$. Find the terminal velocity of the skydiver to the nearest foot per second.
 - C) It is safe to land when her speed is 20 feet per second. At what time t does she reach this speed?
- 18) The function *f* is differentiable for all real numbers. The point $\left(3, \frac{1}{4}\right)$ is on the graph of y = f(x), and the slope at each point (x, y) on the graph is given by $\frac{dy}{dx} = y^2(6 2x)$ A) Find $\frac{d^2y}{dx^2}$ and evaluate it at the point $\left(3, \frac{1}{4}\right)$. B) Find y = f(x) by solving the differential equation $\frac{dy}{dx} = y^2(6 - 2x)$ with the initial condition $f(3) = \frac{1}{4}$.