Exercise	13.5	5	
Equilibriu	ım &	ICE	Tables

Name Per: Date:

The equilibrium constant (K) is the ratio of the equilibrium concentration (or pressure) of product(s) to the equilibrium concentration (or pressure) of reactant(s). The same expression can be used to calculate the reaction quotient, (Q): $2 NO_{2(g)} + 7 H_{2(g)} \Rightarrow 2 NH_{3(g)} + 4 H_{2}O_{(t)}$

$$X_{c} = \frac{[NH_{3}]_{eq}^{2}}{[NO_{2}]_{eq}^{2}[H_{2}]_{eq}^{2}} \quad (at \ equilibrium) \quad ; \quad Q = \frac{[NH_{3}]^{2}}{[NO_{2}]^{2}[H_{2}]^{7}} \quad (at \ any \ moment/point)$$

The coefficients from the balanced equation become exponents. Liquids and solids never appear in the expressions, because their concentrations (or pressures) do not change throughout the reaction.

DIRECTIONS: Write an equilibrium expression for each of the following. Not all equations are balanced.

- $CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$ 1. Kc = [ca21][Soy1]
- <u>4</u> HCl (g) + _O₂ (g) \Rightarrow <u>2</u> H₂O (*l*) + <u>2</u> Cl₂ (g) 2. [CI2]2

 $\frac{\left[Hc1\right]^{4} \left[Lo_{2}\right]}{\operatorname{Sn}(s) + 2\operatorname{CO}_{2}(g) \rightleftharpoons \operatorname{SnO}_{2}(g) + 2\operatorname{CO}(g)}$ 3. rsupatroj2

$$Ke = \frac{LSNO_2]LCO}{[CO_2]^2}$$

 $2SO_3(g) \rightleftharpoons 2SO_2(g) + 1O_2(g)$ 4.

5.

$$k_{c} = \frac{[502]^{2} [02]'}{[503]^{2}}$$

$$Mg(s) + 2Ag^{+} (aq) \neq Mg^{2+} (aq) + 2Ag (s)$$

$$k_{c} = \frac{[Mg^{2+}]^{2}}{[Ag^{+}]^{2}}$$

6.
$$\frac{2}{NO}(g) + \frac{1}{Cl_2}(g) \neq \frac{2}{NOCl}(g)$$

$$K_c = \frac{[Noci]^2}{[No]^4[cl_2]^4}$$
7.
$$2HBr(g) \neq H_2(g) + Br_2(l)$$

$$K_c = \frac{[H_2]}{[HBr]^2}$$
8.
$$C(s) + H_2O(g) \neq CO(g) + H_2(g)$$

$$K_c = \frac{[Co][H_2]}{[H_2O]}$$
9.
$$\frac{2}{O_3}(g) \neq \frac{3}{2}O_2(g)$$

$$K_c = \frac{[D_2]^3}{[D_3]^2}$$
10.
$$O_2(g) + NO_2(g) \neq O_3(g) + NO(g)$$

$$K_1 = [D_3][NO]$$

FOZJE NOZJ

Calculating K_c (or K_p) from a known set of equilibrium concentrations (or pressures) simply requires substituting the equilibrium concentrations (or pressures) into the equilibrium expression. If K_c (or K_p) is known, the concentration (or pressure) of one missing species may be found if the others are known.

DIRECTIONS: Complete the following in the space provided:

11. Determine the equilibrium constant (K_c) for the following reaction if the equilibrium concentrations of $[N_2O_4] = 0.00150$ and $[NO_2] = 0.571$. Write the equilibrium expression and solve for the value of K_c .

$$K_{c} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]} = \frac{[0.571]^{2}}{[0.00150]} = 21\frac{7}{2}.3$$

Kc = 217

12. For the reaction $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$ at 1500°C, an equilibrium mixture of these gases was found to have the following concentrations [CO] = 0.300M, $[H_2] = 0.800M$ and $[CH_4] = 0.400M$. K_c at $1500^{\circ}C = 5.67$. Determine the equilibrium concentration of H2O in this mixture

$$k_{c} = \frac{[(c_{0}][H_{2}]^{3}}{[(H_{4}][H_{2}O]]} = \frac{[0.300][0.800]^{3}}{[0.400][C_{1}X]} = 6.67 \rightarrow [X] = \frac{[0.300][0.800]^{3}}{[0.400][S.67]} = 0.06772$$

Revised: 2018-10-02

Answers: 11) 217 12) 0.0677 M 13) 305 14) 1.84 × 10² 15) 29 17) 2.9 × 10³⁷ 19) 1.79 × 10⁻⁵ 20) 66.7 21) 6.94 × 10³ 23) 3.7 × 10⁻³ 24) N₂O₄] = 0.0307M, [NO₂] = 0.0120M 25) [CO] = 0.260M, [H₂O] = 0.234M, [H₂] = [CO₂] = 0.500M 26) 0.80 27) [H₂] = [I₂] = 0.0670M, [H₁] = 0.766M 28) [CO] = 0.0807M, [Br₂] = 0.0607M, [COBr₂] = 0.0033M

Name:	
Date:	Per:

13. Nitrogen and hydrogen react together in a 4.00 liter container at 450°C. At equilibrium, $[N_2] = 0.130$, $[H_2] = 0.220$, and $[NH_3] = 0.650$. Calculate the equilibrium constant (K_c) for this reaction. ~ 1

$$k_{c} = \frac{[N4J_{3}]^{2}}{[N_{c}][N_{c}][N_{c}]^{3}} = \frac{[0.650]^{2}}{[0.130][0.200]^{3}} = 305.2 \qquad [K_{c} = 305]$$

14. A reaction vessel is charged with hydrogen iodide, which partially decomposes to molecular hydrogen and iodine according to the equation:

$$2\text{HI}(g) \rightleftharpoons \text{H}_2(g) + \text{I}_2(g)$$

When the system comes to equilibrium at 425 °C, $P_{HI} = 0.708$ atm, and $P_{H_2} = P_{I_2} = 0.0960$ atm. Calculate the value of K_p .

$$K_{p} = \frac{(pH_{2})(pT_{2})}{(pH_{2})^{2}} = \frac{(0.0960)(0.0960)}{(0.708)^{2}} = 0.01838$$
[Kc = 0.0184 or 1.84×10²]

15. For the reaction H₂ (g) + Cl₂ (g) \rightleftharpoons 2HCl (g), the following equilibrium concentrations are determined: [H₂] = 0.42 M, $[Cl_2] = 0.075 M$, and [HCl] = 0.95 M. Calculate the value of K_c .

$$K_{c} = \frac{[H_{c}]^{2}}{[H_{c}][c_{12}]} = \frac{[0.95]^{2}}{[0.42][0.035]} = 28.65$$
 [K_c = 29]

16. Write the equilibrium expression K_p for the reaction: $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$.

$$K_{p} = \frac{(p N c)^{2}}{(P N z)(p O z)}$$

17. The K_{eq} for the equilibrium of 2NO (g) + O₂ (g) \Rightarrow 2NO₂ (g) is 5.4 × 10¹³ at 480.0°C. What is the value of K_{eq} for the reaction 4NO (g) + 2O₂ (g) \rightleftharpoons 4NO₂ (g)? = $2(240(g) + 02(g) \ge 2N02(g) \therefore K'_{EQ} = K^2$ $K'_{EQ} = (5.4 \times 10^{13})^2 = [2.9 \times 10^{27}]$

18. Write the expression for K_p for the reaction $4CuO(s) + CH_4(g) \Rightarrow CO_2(g) + 4Cu(s) + 2H_2O(g)$.

$$K_P = \frac{(PCO_2)(PH_2O)^2}{(PCH_4)}$$

19. Acetic acid is a weak acid that dissociates into the acetate ion and a proton in aqueous solution:

$$HC_{H_3O_2}(aq) \rightleftharpoons C_{2H_3O_2}(aq) + H'(aq)$$

At equilibrium at 25 °C a 0.100 M solution of acetic acid has the following concentrations: $[HC_2H_3O_2] = 0.0990 \text{ M}$, $[C_2H_3O_2] = 1.33 \times 10^{-3} \text{ M}$, and $[H^+] = 1.33 \times 10^{-3} \text{ M}$. Calculate the equilibrium constant, K_{eq} , for the ionization of acetic acid at 25 °C.

$$\begin{array}{l} \text{Keq} = \frac{\left[C_{2}H_{3}0_{2} \right] \left[H^{+}\right]}{\left[HC_{2}H_{3}0_{2}\right]} = \frac{\left[1.33 \times 10^{-3}\right] \left[1.33 \times 10^{-3}\right]}{\left[0.0990\right]} = 1.786 \times 10^{-5} \\ \text{Kc} \\ \text{Kc} \\ \end{array}$$

Revised: 2018-10-02

Answers: 11) 217 12) 0.0677M 13) 305 14) 1.84×10^{-2} 15) 29 17) 2.9×10^{27} 19) 1.79×10^{-3} 20) 66.7 21) 6.94×10^{-3} 23) 3.7×10^{-3} 24) N_2O_4 = 0.0307M, [NO₂] = 0.0120M 25) [CO] = 0.260M, [H₂] = (CO_2) = 0.500M 26) 0.80 27) [H₂] = [I₂] = 0.0670M, [HI] = 0.766M 28) [CO] = 0.0807M, [Br₂] = 0.0607M, [COBr₂] = 0.0033M

Name:	

Date:

___ Per:__

20. Phosphorus trichloride and phosphorus pentachloride equilibrate in the presence of molecular chlorine according to the reaction: $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$. If an equilibrium mixture at 450 K contains $PPCl_3 = 0.124$ atm, $PCl_2 = 0.157$ atm, and $PPCl_5 = 1.30$ atm. What is the value of K_p at this temperature?

$$K_{P} = \frac{(PPC15)}{(PPC13)(PC12)} = \frac{(1.30)}{(0.124)(0.157)} = 66.77$$

- Kp=66.8 at bottom.
- 21. Dinitrogen tetroxide partially decomposes according to the equilibrium: $N_2O_4(g) \rightleftharpoons 2NO_2(g)$. A 1.000-L flask is charged with 3.00×10^{-2} mol of N_2O_4 . At equilibrium, 2.36×10^{-2} mol of N_2O_4 remains. K_{eq} for this reaction is _____.

ICE Tables

If equilibrium concentrations are not known, the problem requires using stoichiometric relationships to determine the equilibrium concentrations from given information. These are organized using an ICE table.

For the reaction $CO(g) + H_2O(g) \Rightarrow CO_2(g) + H_2(g)$ calculate the equilibrium concentrations of all species if 1.000 mol of each reactant is mixed in a 1.000L flask. $K_c = 5.10$ at the temperature of this reaction.

and the second second		CO(g)	H ₂ O(g)	CO ₂ (g)	H ₂ (g)
[Initial]	I	1.000	1.000	0.000	0.000
[Change]	C	-x	x	+x	+x
[Equilibrium]	E	1.000 - x	1.000 – x	X	X
$K_{\rm c} = -$	[CO ₂ [CO]	$[H_2O]$ 5.10 = (1.00)	$\frac{x}{(0-x)^2}$ 2.26 = $\frac{x}{1.000-x}$	$\frac{1}{x}$ 2.26 - 2.26 x =	x x = 0.693
K _c = -	[CO ₂ [CO]	$\frac{[[H_2]]}{[H_2O]} \qquad 5.10 = \frac{1}{(1.00)}$ CO(g)	$\frac{x}{(0-x)^2} = \frac{x}{1.000-1}$ H ₂ O(g)	$\frac{1}{x}$ 2.26 - 2.26 x = CO ₂ (g)	x $x = 0.693$ H ₂ (g)

22. When wine spoils, ethanol is oxidized to acetic acid as O_2 from the air dissolves in the wine: $C_2H_5OH(aq) + O_2(aq) \rightleftharpoons CH_3COOH(aq) + H_2O(l)$ The value of K_c for this reaction at 25°C is 1.2 x 10⁸². Will much ethanol remain when the reaction has reached equilibrium? Explain.

1.2 × 10⁸² IS AP EXTREMELY LARGE NUMBER MERNING THE RXN GOED TO COMPLETION (BASICALLY), SO NOT MUCH IF ANY OF THE CLASSIF WILL REMAIN. ESSENTIALLY ALL CLASSIFIED TO PRODUCTS.

23. An equilibrium mixture of O_2 , SO_2 and SO_3 contains equal concentrations of SO_2 and SO_3 . Calculate the concentration of O_2 if $K_c = 270$. for the reaction: $2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$

$$K_{C} = \frac{[50_{2}]^{2}}{[50_{2}]^{2}[0_{2}]}$$

$$K_{C} = \frac{[50_{2}] = [50_{2}] = x}{[x]^{2}}$$

$$K_{C} = \frac{[x]^{2}}{[x]^{2}[0_{2}]} = 270. = \frac{[x]^{2}}{[x]^{2}[0_{2}]} = 270. = \frac{1}{[0_{2}]}$$

Answers: 11) 217 12) 0.0677 *M* 13) 305 14) 1.84 × 10² 15) 29 17) 2.9 × 10³⁷ 19) 1.79 × 10³ 20) 66.7 21) 6.94 × 10³ 23) 3.7 × 10³ 24) N₂O₄] = 0.0307M, [NO₂] = 0.0120M 25) [CO] = 0.260M, [H₂O] = 0.234M, [H₂] = [CO₂] = 0.500M 26) 0.80 27) [H₂] = [I₂] = 0.0670M, [H₁] = 0.766M 28) [CO] = 0.0807M, [Br₂] = 0.0607M, [COBr₂] = 0.0033M

[02] = 3.703×10-3

Exercise 13.5 Equilibrium & ICE Tables		Nam Date:		Per:
24. The value of K_c for the equilibrium 0.0367M and the initial concentrat R N204(g) \ge 2N02(g) Kc I 0.0367 0 c -x + 2x 4. E 0.0367-x 2x 1.3 25. At 650°C, the reaction below has a	tion of NO ₂ is zero, what w $= \frac{[NO_2]^2}{[N204]}$ $= \frac{[2x]^2}{[0.0367 - x]}$ $= \frac{[2x]^2}{[0.0367 - x]}$	vill be the concentration $4x^{2}+4.64 \times 10^{-3}$; $x = -4.64 \times 10^{-3}$; $x = 5.968 \times 10^{-3}$;	of both gases at eq $1702 \times 10^{-9} = 0$ $1\sqrt{(4.64 \times 10^{-3})^2}$ $3 \qquad 2(4)$ $07 - 7.128 \times 2 \times 2 \times 5.968$.0367 - x = 0.036	uilibrium? $-4 \cdot 4 \cdot (-1.72 \times 10^{-4})$ 10^{-3} $\times 10^{-3}) = 0.01193 = 0.0119$ $7 \cdot 5.968 \times 10^{-3} = 0.03073 = 0.0307$
4.00 L container and allowed to re $K_c = \frac{1}{100} $	act, what will be the equili $H_2(g) + CO_2(g) \neq 0$ [0.500] [0.500] $-\times -\times -\times$ [0.500-x] [0.500-x] $[x] \rightarrow 0.8750$ for the following equilibrium	ibrium concentrations of $CO(g) + H_2O(g)$ V + X + X X + X $\overline{[X]}$ $\overline{[X]}$ $\overline{[X]}$ $\overline{[U]}$	all four gases? .439 - 0.8780x 0.439 = 1.8780 X = 0.232 D = [420] = 0.2 $z] = [co_2] = (0.2)$ $T = [co_2] = 0.2$ $D = [co_2] = 0.2$	= x = x = 34 + 1 = 0.234 = 0.266 + 126 = 0.266 + 1266 + 126 = 0.266 + 1266 +
R I E	+ 0.20 -	A2D(g) + 2CB(s) Kc 0.30 0.10 0.20	$= \frac{[AzD]}{[AB]^2} =$	0.20 [0.50] ² = 0.80
Since reactionts 4 Products are present Q must be calculated to find 27. A 5.00 L reaction vessel is filled v the equilibrium concentrations of 1 direction $H_Z(g) + I_Z(g) = 2HI(g)$ SI [0.200] [0.200] [0.500] $K_C = [HI]^2$ $(H_Z][IZ]$ Q = [0.500]^2 = 6.25 Lo.200][0.200] [P.200] (Product 28. Carbonyl bromide, COBr ₂ , can be 0.0200 mol COBr ₂ is sealed in a 5 CO(g) + Br ₂ (g) = COBr ₂ (g) [0.0800] [0.0600] [0.0600] $K_C = [COBr_2]$ $K_C = [COBr_2]$ $K_C = [COBr_2]$ $K_C = [COBr_2]$	with 1.00 mol of H ₂ , 1.00 m H ₂ , I ₂ and HI at 500K given R H ₂ (g) + Iz(g) = z I [0.2005 [0.200] [0 C - x - x + E [0.200-x] [0.200-x] [0 Kc = $\frac{[0.500]}{[0.200]}$ formed by reacting CO with 00L flask. Calculate equil Z CO(g) + Br ₂ (g) I [0.0800] [0.0600 C + x + x E 0.0800+x 0.0600 Kc = $\frac{[COBr_2]}{[col[8r_2]]}$	nol of I_2 and 2.50 mol of n the reaction: $H_2(g) + I_2$ LIFI(g) $VKc =0.5003Z \times VI29 = 00.50042 \times 10.35 = 0-X J^2 Z.231-11.35ith Br2. A mixture of 0.44librium concentrations forCOBr_2(g)0.500400 - XX$	$\frac{0.500 + 2x}{0.200 - x}$ $\frac{0.500 + 2x}{0.500 + 2x}$ $\frac{0.00 \text{ mol CO}, 0.300}{0 \text{ mol CO}, 0.300}$ $\frac{0.680}{2} + 1.0952$ $= -1.0952 \pm \sqrt{0}.$ $C = 6.717 \times 10^{-4}$	$1.77 = 13.35 \chi$ $\chi = 0.132$ $[H_2] = [I_1] = 0.200 - 0.132$ $[H_3] = 0.500 - 2(0.132)$ = 0.764 M mol Br ₂ , and (-7, -0.000736 = 0) (-7, -0.00076
Q = 0.833 DXK, RXN GOE IN POREDEE	0.680 = 50.004 00	ICO.060+x) S.E	6r.]=0.0600 + 6 :08r.]=0.0400-	0.767×104 = 0.0807 M 0.717×104 = 0.0607 M 6.717×104 = 0.0607 M

Revised: 2018-10-02

Answers: 11) 217 12) 0.0677 M 13) 305 14) 1.84 × 10² 15) 29 17) 2.9 x 10²⁷ 19) 1.79 × 10³ 20) 66.7 21) 6.94×10^3 23) 3.7×10^3 24) N₂O₄] = 0.0307M, [NO₂] = 0.0120M 25) [CO] = 0.260M, [H₂O] = 0.234M, [H₂] = [CO₂] = 0.500M 26) 0.80 27) [H₂] = [I₂] = 0.0670M, [H₁] = 0.766M 28) [CO] = 0.0807M, [Br₂] = 0.0677M, [COBr₂] = 0.0037M