
The Skate Basic Park - Intro to Energy Potential and Kinetic PhET Lab

Introduction:

When Tony Hawk wants to launch himself as high as possible off the half-pipe, how does he achieve this? The skate park is an excellent example of the **conservation of energy**. The law of conservation of energy tells us that we can never create or destroy energy, but we can change its form. In this lab, we will look at the conversion of energy between *gravitational-potential* energy, work, and *kinetic* (or moving) energy.

Kinetic Energy

Potential Energy

Mechanical Energy

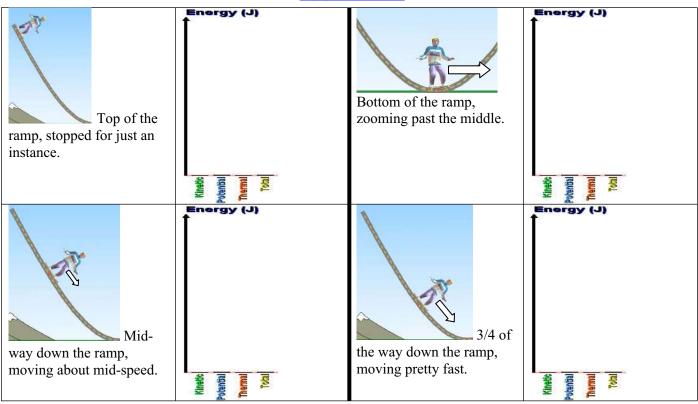
Joule

State, in your own words, the Law of the Conversation of Energy.

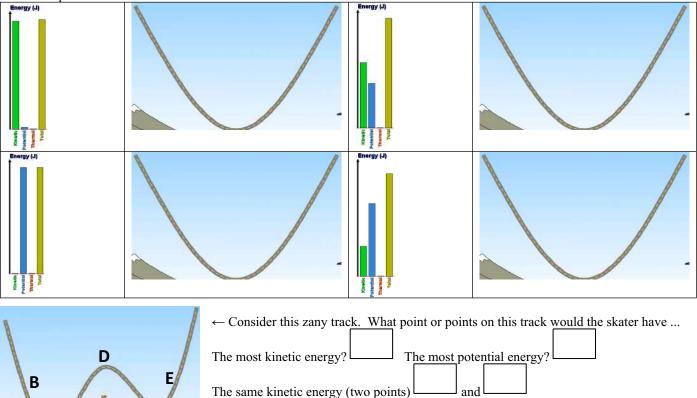
<u>Procedure:</u> PheT Simulations \rightarrow Play With Sims \rightarrow Physics \rightarrow Energy Skate Park: **Basics** Run Now!

Take some time and play with the skater. Turn on the Bar Graph, Pie Chart, and Speed options.

How does increasing skater's mass ch	ange the skater's		
Kinetic Energy?	Potential Energy?	Total Energy?	
How does the skater's kinetic energy	change as he moves down the ran	mp?	
How does the skater's kinetic energy	change as he moves up the ramp	?	
How does the skater's potential ener	gy change as he moves down the	ramp?	
How does the skater's potential ener	gy change as he moves up the ran	ıp?	
How does the skater's total energy c	hange as he moves down the ramp		
How does the skater's total energy c	hange as he moves up the ramp? _		
Describe the skater's kinetic energy a	at the bottom of the ramp.		*
Describe the skater's potential energ	y at the bottom of the ramp.		


What happens when the skater is dropped onto the ramp from above the ramp?

Observe the following situations. Draw the possible bar graphs for the situation shown. Compare your results with a nearby lab group, AFTER you have completed this section.



Energy Skate Park: Basics

Bar Graph				
🗹 Pie Chart				
🗹 Grid				
Speed	E			
Skater Mass				
Smal	Large			

Draw where the skater might be based on the bar graphs shown. Compare your results with a nearby lab group, AFTER you have completed this section.

<u>Conclusion Questions:</u> (circle the correct answers)

- 1. At the highest point kinetic energy is zero / maximum while the potential energy is zero / maximum.
- 2. At the lowest point kinetic energy is zero / maximum while potential energy is zero / maximum.

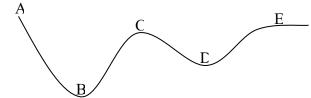
- 3. Mass *affects / does not affect* the amount of energy.
- 4. As an object falls in gravity, kinetic energy increases / decreases / remains the same.
- 5. As an object falls in gravity, potential energy *increases / decreases / remains the same*.
- 6. As an object falls in gravity, total energy *increases / decreases / remains the same*.
- 7. An object travelling faster and faster has a kinetic energy that *increases / decreases / remains the same*.
- 8. An object travelling faster and faster has a potential energy that *increases / decreases / remains the same*.
- 9. As an object speeds up, the total energy *increases / decreases / remains the same*.
- 10. As an object slows down, the total energy increases / decreases / remains the same.

The Skate Park – Intro to Energy and Work PhET Lab

Introduction:

In this lab, we will look at the conversion of energy between *gravitational-potential* energy, work, and *kinetic* (or moving) energy. This conversion is *work*. (Realize though, that in real life, skateboard wheels have friction. In our experiments, we ignore friction) Energy is measured in units of Joules.

Important Formulas: $KE = \frac{1}{2}mv^2$ PE = mgh $W = \Delta E$


<u>Procedure:</u> PheT Simulations \rightarrow Play With Sims \rightarrow Energy Skate Park Run Now!

- Take some time and play with the skater and his track.
- Click on the buttons to show the energy graphs and the pie graphs. These graphs show the conversion between *kinetic energy (green)* and *potential energy (blue)*. If any energy is lost, it will be shown with a *red* bar (*thermal energy lost*).
- Reset the skater to the standard half-pipe and observe the energy bars as he moves back and forth (without friction).
- As the skater descends his kinetic energy (green) _____ and his potential energy (blue) _____. The change in kinetic energy is always _____ to the change in potential energy.
- Does mass of the skater affect the **magnitudes** of the kinetic and potential energy?

Reset and drag the bottom on the half pipe to the bottom of the grid to set the lowest height to zero.

- Turn on the grid. Set the PhET skater (75kg) at 5.0m above the zero and allow him to skate.
- How much potential energy does he have at 5.0m? _____ How much kinetic energy at 0.0m? ______
- A 20.0 kg skater that starts his skate 10m high (on the earth) would have a potential energy of ______ and a kinetic energy of ______ before his skate. At the lowest point, the skater would have a potential energy of ______ and a kinetic energy of ______. (hint: use the important formula for potential energy)

Create the skate paths as shown. If the skater starts on the left side, will he have enough energy to make it all the way to the right side? _____ Why? / Why not? ______

If the skater starts on the left on the path here, match the letter here with the following conditions:

- 1. Maximum kinetic energy ____
- 2. Maximum potential energy _____

3. Two locations where the skater has about the same speed _____

Energy Skate Park

Energy vs. Time

If the skater starts at the top of the ramp on the left, show how high will he be on the right side of the ramp. Try this in the

simulation. Press 1 to zoom out and increase the size of the ramp.

Part II: Gravity's affect on Energy

Reset the skater and turn on the pie chart to show kinetic and potential energy.

- Move the skater to Jupiter, where acceleration due to gravity is 26m/s²! Describe what happens to the skater's potential and kinetic energy.
- Move the skater to the moon ($g = 1.6 \text{ m/s}^2$). Why is he moving like he is?
- Zoom out , increase the size of the ramp, and move the skate to SPACE! Press the arrow keys on your keyboard. Zoom out some more. Have fun.

Is there potential (mgh) energy in space? _____Why / Why not? _____

Is there kinetic (½mv²) energy in space? _____Why / Why not? _____

<u>Conclusion Calculations:</u> ($\frac{1}{2}$ pt each) use g = 10. m/s^2

Complete the table of kinetic and potential energies:

Mass of skater (m)	height (h)	velocity (v)	Kinetic Energy (KE)	Potential Energy (PE)
20. kg	14 m	12 m/s	1.	2.
60. kg	0.0 m	3.	1470 J	4.
0.20 kg	18 m	0.0 m/s	5.	6.
7.	6.0 m	5.0 m/s	8.	600. J
5.0 kg	9.	10.	160 J	850 J

Conclusion Questions: (1/2 pt each) use g = 10. m/s^2

- 11. At the highest point kinetic energy is zero / maximum while the potential energy is zero / maximum.
- 12. At the lowest point kinetic energy is zero / maximum while potential energy is zero / maximum.
- 13. Mass affects / does not affect the conservation of energy.
- 14. How much potential energy does the 60. kg skater have before she starts her ride, 12 m above the ground?
- 15. How much kinetic energy does a 60.0 kg skater have traveling with a velocity of 4 m/s?
- 16. How fast must a 20. kg skater travel to have a kinetic energy of 360 Joules?
- 17. How high must a 2.0 kg basketball be thrown so it has a potential energy of 160 J?
- 18. How fast must the 2.0 kg basketball be thrown upward to achieve the same 160 J?

Simulations at http://phet.colorado.edu/

- 19. If a 75kg skater starts his skate at 8.0m, at his lowest point, he will have a velocity of ______
- 20. In the above question, all the potential energy became kinetic energy. How much work was done?