Math Assignment 1: Math Choice Board

Directions: Select at least one activity per column to complete each day. Color or check the box when you have completed a given activity.

Monday Tuesday		Wednesday	Thursday	Friday
Using all four of the following digits 5, 6, 7, and 8, and any of the four operations $(+, -, x, \div)$, can you make the number 24? Can you make 36?	Using all four of the digits 1, 2, 3, and 4, and any of the four operations (+, -, x, ÷), can you make the number 13? Can you make 21?	Using all four of the digits 2, 4, 6, and 8, and any of the four operations (+, -, x, \div), can you make the number 26? Can you make 12 ?	Using all four of the digits 3, 5, 7, and 9, and any of the four operations $(+, -, x, \div)$, can you make the number 14? Can you make 36?	Using all four of the digits 3, 4, 5, and 6, and any of the four operations $(+, -, x, \div)$, what is the largest number you can make?
Select all of the numbers that round to 4 when rounding to the nearest whole number. 4.87 4.325 4.08 4.5 3.8	Mario earned 5.82 points in one day. Trent earned 5.829 points in one day, and Anusha earned 5.815 day. Select all true statements. Mario < Trent Anusha < Mario Trent = Mario Trent < Mario Trent > Anusha Mario > Trent	In March it rained 3.67 inches and in April it rained 7.4 inches. How much more rain fell in April than in March?	Write each number. a)ninety six and fifteen thousandths b)twelve and three hundred eighty-nine thousandths	The Rock and Roll Half Marathon is a 13 mile course. The first part of the race is 3.75 miles. The second part of the race is 4.08 miles. What is the distance of the third and final leg of the race? a. 6.83 b. 6.27 c. 6.17 d. 5.17 e.
Which one doesn't belong? Why? $\frac{3}{5}$ $\frac{5}{12}$ $\frac{5}{4}$ $\frac{4}{5}$	Which statement is true? Why?	Jack and Max shared a large pizza, cut into 12 equal slices. • Max ate 3 slices. • Jack ate half the pizza. How many slices are left?	Write a story problem that matches the given problem. $\frac{5}{10} > \frac{1}{3}$	Draw a model to represent the given problem. $\frac{3}{4} > \frac{2}{3}$

 Use grid paper. Draw a square with a side of 5 units. Find the area and perimeter of your square. 	Look for advertisements with numbers (online, in newspapers, or in magazines). Find place values, compare, round, read, and write the word names for the numbers. (e.g. find a house for sale that has a 3 in the hundred thousands place).	1. 2. 3.	Use grid paper. Draw a rectangle with length of 6 units and a width of 2 units. Find the area and perimeter	Using a deck of cards, create 9-digit numbers. Round numbers to nearest thousand, ten thousand, and hundred thousand.	Shade the models to show equivalents. $\frac{1}{\frac{7}{3}} = \frac{8}{12}$
			perimeter of the rectangle.		

Math Assignment 2: Additional Activities

Directions: Select at least one activity per category to complete each day. Cross out the item when you have completed a given activity.

Category 1: Computation Activities

Directions: Use the attached number cards for each activity.

- Select four numeral cards from a pile (remove the 10 cards).
- Create two *two-digit* numbers and add them to make the greatest sum.
- Create two *two-digit* numbers and add them to make the smallest sum.
- Create two *two-digit* numbers and subtract them to make the greatest difference.
- Create two *two-digit* numbers and subtract them to create the smallest difference.
- Select two of the numeral cards 1-10. Multiply to find the product of the two numbers.
- Select four numeral cards from a pile (remove the 10 cards).
- Create two *two-digit* numbers and find the product.
- Create a *one-digit* divisor and *three-digit* dividend division problem and solve.

Category 2: Fraction Action Activities

Directions: Use the attached fraction cards for each activity.

- Select two fractions from the fraction card pile. Add the two fractions.
- Select two fractions from the fraction card pile. Subtract the two fractions.
- Select two fractions from the fraction card pile. Compare the fractions using the symbols/terms greater than, less than, or equal to.
- Select four cards from the fraction card pile. Order them from least to greatest.
- Select four cards from the fraction card pile. Order them from greatest to least.

Category 3: Measurement

Directions: Solve the following problems.

- Mrs. Smith works for 4 hours and 45 minutes each day. She is allowed to choose when she starts and stops each day. What are some possible beginning and ending times for her?
- Find several real-world examples of angles (ex. the corner of a book is a right angle) around your house.
- Rusty, is a medium sized dog that loves to run. Design a dog pen for him using 36 feet of fencing. What are some different ways that you could design a dog pen using all 36 feet of fencing? Which do you think would be the best design to use for his pen?
- John found a box in his room. He wanted to describe the size of the box to his friend. What are all the ways John could measure the box to describe its size to his friend?

Category 4: Problem Solving

Directions: Solve the following problems.

- Using the problem types chart, select a problem type to solve from each row.
- Create your own single-step practical problems based on the problem type chart and solve it.
- Create your own two-step practical problem. Below is an example of a two-step practical problem.

There are 15 students in the fourth grade and twice that number in the fifth grade. There are 13 boys and 14 girls in the third grade. How many students are in grades 3 through 5 altogether?

Math Assignment 3: Online Digital Resources (Optional)

Directions: The following links can be used to provide additional instructional experiences if digital access is available.

AAAMath: www.aaamath.com

Math Playground: <u>www.mathplayground.com</u>

Khan Acadamy:

https://www.khanacademy.org/about/blog/post/611770255064350720/remote-learning-with-khanacademy-during-school

BrainPop:

https://www.google.com/url?q=https://www.google.com/url?q%3Dhttps://educators.brainpop.com/2020/0 2/19/free-brainpop-access-for-schools-affected-by-the-coronavirus/?utm_source%253Dorganic%2526utm_medium%253Dsocial%2526utm_campaign%253Dcoronavi rus%2526utm_content%253Dfreeaccess%26sa%3DD%26ust%3D1584027992023000%26usg%3DAFQjCNGBQdPRymVl4vxrqUOWXZ7 pg_IF9w&sa=D&ust=1584134492415000&usg=AFQjCNF8mQrHaA7fWKdOs9YUbDX_An9-wA

Mathwire:

http://mathwire.com/index.html

For additional digital resources specific to your child's school, please consult the school's webpage.

Grid Paper

1	2	3	4	5
6	7	8	9	10
1	2	3	4	5
6	7	8	9	10

<u>1</u>	<u>3</u>	<u>2</u>	<u>1</u>	<u>2</u>
2	4	3	4	5
<u>5</u>	<u>1</u>	<u>3</u>	<u>4</u>	<u>1</u>
6	3	8	5	6
<u>3</u>	<u>3</u>	<u>5</u>	<u>7</u>	7
10	5	12	10	12
<u>1</u>	<u>5</u>	<u>9</u>	<u>11</u>	<u>7</u>
5	8	10	12	8

Common Multiplication and Division Problem Types

Equal Groups Whole Unknown	Equal Groups Size of Groups Unknown	Equal Groups Number of Groups Unknown
There are 5 boxes of markers. Each box contains 6 markers. How many markers are there in all?	If 30 markers are shared equally among 5 friends, how many markers will each friend get?	If 30 markers are placed into school boxes with each box containing 6 markers, how many school boxes can be filled?
?	30	30 6 ?
Multiplicative Comparison Result Unknown	Multiplicative Comparison Start Unknown	Multiplicative Comparison Comparison Unknown
Tyrone ran 3 miles. Jasmine ran 4 times as many miles as Tyrone. How many miles did Jasmine run?	Jasmine ran 12 miles. She ran 4 times as many miles as Tyrone. How many miles did Tyrone run?	Jasmine ran 12 miles. Tyrone ran 3 miles. How many times more miles did Jasmine run that Tyrone?
Array Whole Unknown		Array One Dimension Unknown
There are 3 baseball tea competing at the field. E team had 9 baseball pla How many baseball play were there all together?	ms ach yers. ers	There are 27 children playing on teams at the field. The children are divided equally among 3 teams. How many children are on each team?
		• • • • · · 27 • • · · · 27 •