

Step #5 Measure 1 cm to the left of the center point and make a dot

Step #6 Measure 1 cm to the right of the center point and make a dot

Step #7 Label the dot on the left "F1" and the dot on the right "F2". These are your two foci. Step #8 Measure the distance between the two foci (it should be 2.0 cm)

Step #9 Label this

sheet "Ellipse A" and record the foci distance on the top right side of the sheet

Step #10 Push a

pushpin through each

of the foci until they are

secure in the pressboard but do not push it all the way in.

Step #11 Loop the

string around the two pushpins. Be sure the string is on the metal part of the pins, not the plastic part.

Step #12 Using the string as a guide for your pencil, draw an ellipse.

foci distance = 20cm

Ellipse A foci distance

- 2.0cm

Step #13 Once your

ellipse is completed,

measure the length of the major axis (the distance across the ellipse, through the two foci) major axis

Step #15 Find the

formula for eccentricity on the cover of your ESRT

Step #16 Record the

eccentricity formula on the top left side of your sheet

Step #17 Substitute in your measurements Step #18 Use a calculator to solve the equation Step #19 Record your answer to the nearest

thousandth (three places). Eccentricity DOES NOT get any units.

Step #20 Choose one

of your foci (either one) and draw an orange circle around it. This focus will represent the Sun.

Step #21 On the side of

the ellipse closest to the Sun, mark an "X" and label it as seen here.

Step #22 On the side of

the ellipse farthest from the Sun, mark an "X" and label it as seen here. Ellipse B foci distance = 5 cm Ellipse C foci distance = 8 cm

held Diagram #1 this orbit are the points

labeled *F*₁ and *F*₂. Moon Planet

F1 F2

(Drawn to scale)

held this orbit are the points

labeled F_1 and F_2 . Diagram #1 Moon Planet

F1 F2

(Drawn

to scale)

Diagram ould be located if they were **#2** going around *Upsilon Andromedae* instead of the Sun. All dist scale.MarsPlanet D Earth Venus Mercury Star Line of major axis of orbits Second planet focus D's of orbit 66 Describe the eccentricity of planet *D*'s orbit relative to the eccentricities of the orbits

Diagram ould be located if they were **#2** going around *Upsilon Andromedae* instead of the

Sun. All dist scale.MarsPlanet D

Earth Venus Mercury Star Line of major axis of orbits Second planet focus D's of orbit 66 Describe the eccentricity of planet D's orbit relative to the eccentricities of the

Diagram #3

traveling around a star. Points *A*, *B*, *C*, and *D* are four positions of this planet in its orbi D

Star A C

Foci

Direction of movement

B(Drawn to scale)

Diagram #3

traveling around a star. Points *A*, *B*, *C*, and *D* are four positions of this planet in its orbi

Star A C

Foci

Direction of movement B(Drawn to scale)

nuary 4 ter in the orthern isphere Diagram #4

(Not drawn to scale)

147,600,000 km 152,600,000 km Sun

July 4 summer in Northern Hemisphe