Aghh-My Iphone Battery Is Dead!!!!

Everything you ever needed to make Chemical Car Battery

What Do We Already Know?

- Atoms and molecule can have positive or negative charge
- Periodic Table Trends:
 - 1. Columns 1 and 2: Atoms try to lose electrons
 - 2. Columns 6 and 7: Atoms try to gain electrons

New Terms For This Week

- Oxidation
- Reduction
- RedOx Rxn
- Voltage Potential

What Do We Need To Know For Making A Battery Car?

- How do the chemical reactions work within a cell?
- How do cells relate to batteries?
- Best battery approach for the chemical cars?

2016 Corvette 650 HP: 0-60 mph: 3.3 sec ¼ mile time: 11.3 sec (max speed 128 mph)

2016 Tesla (Insane mode): 0-60 mph: 3.1 sec ¼ mile time: 11.6 sec (max speed 115 mph)

KillaCycle: 0-60 mph: *less than 1 sec* ¼ mile time: 7.9 sec (max speed of 168 mph)

Terminology:

- Oxidation: e⁻ are removed from a species
 - Ca(s) \rightarrow Ca⁺² (aq.) + 2e⁻ E: 2.87V (High Voltage Potential)
 - Sn(s) \rightarrow Sn⁺² (aq.) + 2e⁻ E: 0.13V (Low Voltage Potential)

- Reduction: e⁻ are accepted by a species.
 - $F_2(aq) + 2e^- \rightarrow 2F^-(aq)$ E: 2.87V (High Voltage Potential)
 - AgBr(s) + $e^ \rightarrow$ Ag(s) + Br⁻ (aq) E: 0.07V (Low Voltage Potential)

Terminology/Example

• <u>Redox Rxn:</u>

- Done in solution (typically H₂0)
- Combination of a reduction AND oxidation reactions

Strongly Favorable Reaction Oxidation: Ca(s) \rightarrow Ca⁺² (aq.) + 2e⁻ Voltage Potential: 2.87V Reduction: F₂ (aq) + 2e⁻ \rightarrow 2 F⁻ (aq) Voltage Potential: 2.87V Redox Rxn: F₂ (aq) + Ca(s) \rightarrow 2 F⁻ (aq) + Ca⁺² (aq) V. Pot.: 5.74V Favorable Reaction #1Oxidation:2 Li (s) \rightarrow 2 Li⁺ (aq) + 2 e⁻Voltage Potential:3.0 VReduction:Cu⁺² (aq)+ 2 e⁻ \rightarrow Cu(s)Voltage Potential:0.3V

Redox Rxn: 2 Li (s) + Cu⁺² (aq) \rightarrow 2 Li⁺(aq) + Cu(s) <u>Volt. Pot.: 3.3V</u>

Favorable Reaction #2Oxidation:2 K (s) \rightarrow 2 K⁺(aq) + 2 e⁻Voltage Potential:2.9 VReduction:Sn⁺² (aq) + 2 e⁻ \rightarrow Sn(s)Voltage Potential:-0.1V

Redox Rxn: 2 K (s) + Sn⁺² (aq) \rightarrow 2K⁺(aq) + Sn(s) Volt. Potential: 2.8V

Example

Unfavorable Reaction Oxidation: $2 F^{-}(aq) \rightarrow F_{2}(aq) + 2 e^{-}$ Voltage Potential: -2.87V Reduction: $2 Na^{+}(aq) + 2 e^{-} \rightarrow 2 Na(s)$ Voltage Potential: 2.71V

Redox Rxn: 2 F⁻ (aq) + 2 Na⁺ (aq) \rightarrow F₂(aq) + 2 Na(s) Volt. Pot.: -0.16V

Coca-Cola Battery

- Won't work with just deionized water?
- Only certain metals will work?

Coca-Cola Battery

- Coke used because it contains an acid (H₃PO₄)
- **Oxidation:** $Zn(s) \rightarrow Zn^{+2}(aq) + 2e^{-1}$ Voltage: 0.76V
- **Reduction:** $Cu^{+2}(aq) + 2e^{-} \rightarrow Cu(s)$ Voltage: 0.34V

Redox Rxn:

 $Zn(s) + Cu^{+2}(aq) \rightarrow Zn^{+2}(aq) + Cu(s)$ Voltage: 1.10V

Coca-Cola Battery-Zn Electrode

- The Zn electrode: Oxidation
 - Zn(s) → Zn⁺² and 2 e⁻ migrate to the Cu electrode.
 - Zn^{+2} ions bond to PO_4^{-2}
 - Zn(s) reduces Cu⁺² on the surface, coating the Zn electrode with Cu.

Coca-Cola Battery: Cu Electrode

• Cu⁺² ions reduced to Cu(s)

- Some Cu⁺² ions make their way to the Zn
- Cu⁺² is receiving e⁻ (reduction)

Coca-Cola Battery

• The Zn electrode

- Zn releases e⁻ to the Cu electrode.
- Zn⁺² ions bond to PO₄⁻²
- Zn(s) reduces Cu⁺² on the surf., coating the Zn electrode with Cu.
- The Cu electrode
 - Cu⁺² ions reduced to Cu(s)

Electrons do NOT move through the solution

Why Won't My Chemical Car Move?

- Voltage loss across any resistor: V= I x R Volts = Amps x Ohms
 - Bad wiring on chemical car
 Very low current to your motor!
- Power loss to any resistor: $W = V \times I = V^2 \times I$ Watts = (Volts)² x Amps

?

- Voltage loss across any resistor: V= I x R
 Volts = Amps x Ohms
 - Power loss to any resistor: $W = V \times I = V^2 \times I$ Watts = (Volts)² x Amps

• Car Battery/Wire Demo: V= 12V, Resistance of wire: 1 ohm

- 1. Amps through the wire: $12V = I (amps) \times (1 \text{ Ohm}) \rightarrow I=12 \text{ A}$
- 2. Power loss to the wire: $W = (12V)^2 \times 12 A \rightarrow \frac{1700 Watts}{1700 Watts}$

Car Battery/Mr. Powers Demo: V =12V, Mr. Powers R: 1x10⁶ ohms

- 1. Amps through Mr. P.: 12V = I (amps) x (1x10⁶ Ohms) \rightarrow I=1.2X 10⁻⁵ A
- 2. Power loss to Mr. Powers: $W = \frac{1.7 \times 10^{-3} Watts}{10^{-3} Watts}$

Summary

- RedOx Reaction: Combination of 2 Processes
 - Reduction: Chemical reaction in which a species accepts an e⁻
 - Oxidation: Chemical reaction in what a species donates an e⁻
- Voltage Potential: Energy that would be exchanged in a e⁻ transfer
- What's Next?
 - Cells vs. Batteries
 - Series vs. Parallel Cells

Chemical cars will probably need to use parallel and series circuits