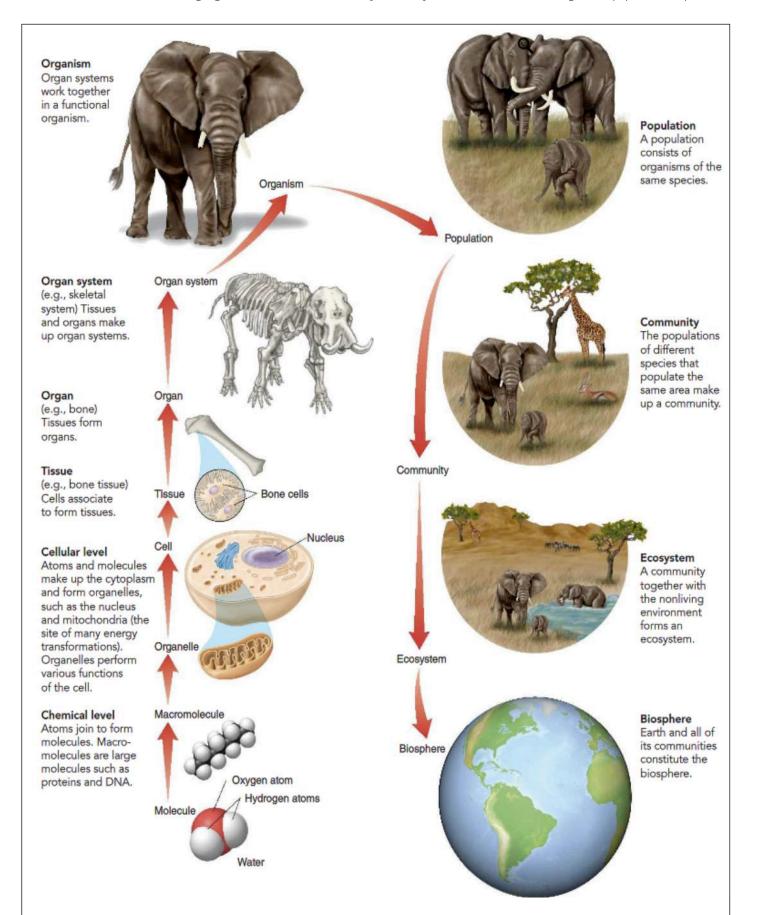
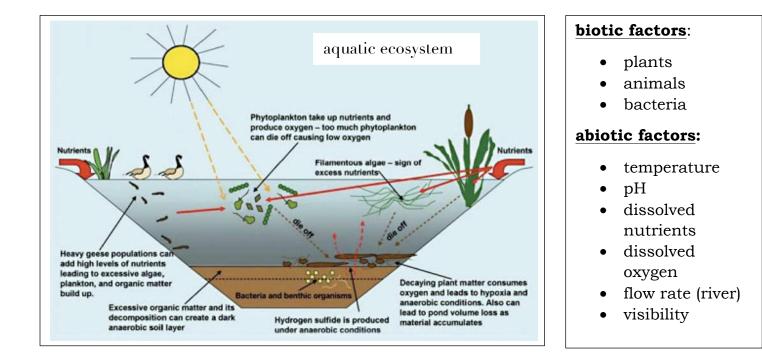
Keystone Biology Remediation

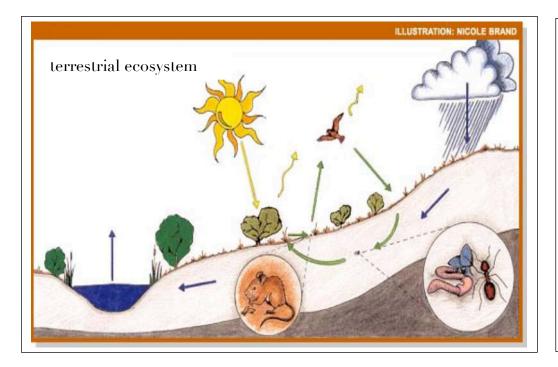
B4: Ecology


Assessment Anchors:

- to describe the levels of ecological organization (i.e. organism, population, community, ecosystem, biome, biosphere) (B.4.1.1)
- to describe characteristic biotic and abiotic components of aquatic and terrestrial ecosystems (B.4.1.2)
- to describe how energy flows through an ecosystem (e.g. food chains, food webs, energy pyramids) (B.2.3.1)
- to describe biotic interactions in an ecosystem (e.g. competition, predation, symbiosis) (B.4.2.2)
- to describe how matter recycles through an ecosystem (i.e. water cycle, carbon cycle, oxygen cycle, nitrogen cycle) (B.4.2.3)
- to describe how ecosystems change in response to natural and human disturbances (e.g. climate change, introduction of nonnative species, pollution, fires) (B. 4.2.4)
- to describe the effects of limiting factors on population dynamics and potential species extinction (B.4.2.5)

Unit Vocabulary:


abiotic	endemic species	producer	
aquatic	energy pyramid	succession	
biogeochemical cycles	environment	symbiotic relationship	
biome	food chain	terrestrial	
biosphere	food web	trophic level	
biotic	habitat		
community	limiting factor		
competition	nonnative species		
consumer	organism		
decomposer	population		
ecology	population dynamics		
ecosystem	predation		


Describe the levels of ecological organization (i.e. organism, population, community, ecosystem, biome, biosphere) (B.4.1.1)

Assessment Anchor: to describe characteristic biotic and abiotic components of aquatic and terrestrial ecosystems (B.4.1.2)

biotic –	an adjective that refers to a living or once living organism in an ecosystem
abiotic –	an adjective that describes a nonliving component of an ecosystem
terrestrial –	an adjective that describes having to do with a land environment
aquatic -	an adjective that describe having to do with a water environment

biotic factors:

- plants
- animals
- bacteria

abiotic factors:

- temperature
- precipitation
- soil nutrients
- sunlight

to describe how energy flows through an ecosystem (e.g. food chains, food webs, energy pyramids) (B.2.3.1)

their own food

Producers: organisms that can produce

A. Herbivores: organisms whose diet

B. **Carnivores**: organisms whose diet consists mostly of animal matter

C. **Omnivores**: organisms who eat both

D. Detrivores: organisms that eat dead

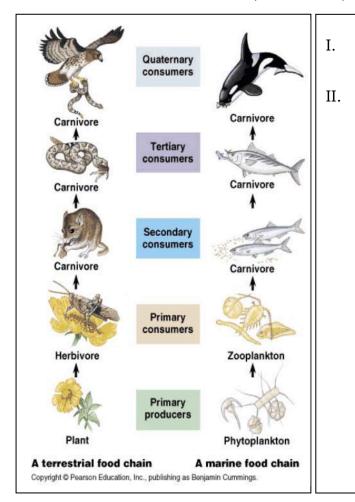
E. Decomposers – organisms who obtain

organisms; these include bacteria and

important for recycling elements in the

energy by breaking down dead

fungi. These organisms are very


organisms, especially dead plant matter

consists mostly of plants

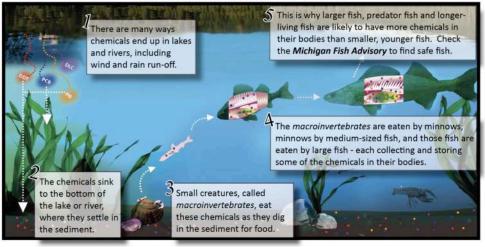
plants and meat

their own food (usually by photosynthesis)

Consumers: organisms that cannot produce

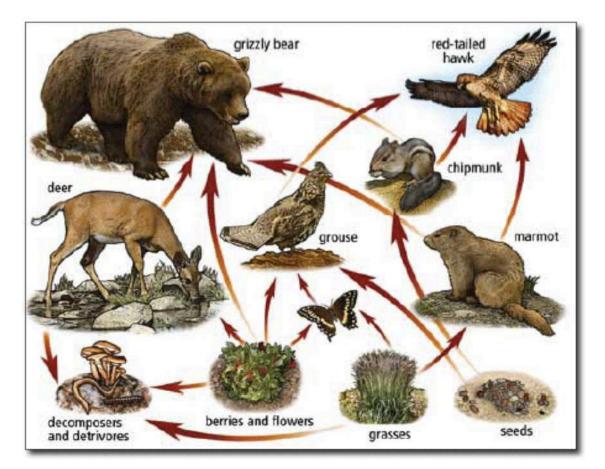
Food Chain:

describes the flow of energy through living things

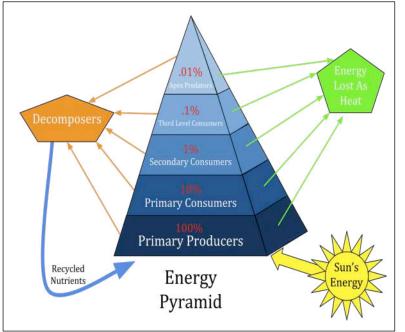

Trophic Level:

a feeding level in a food chain; (In the diagram above, the trophic levels are in the boxes between the two food chains.)

environment.


Bioaccumulation:

when toxins are present in the environment, they are always most concentrated in the organisms at the top of the food chain.

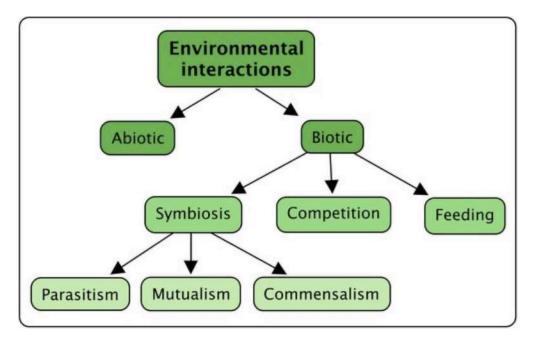

Bioaccumulation in Action

Food Web: describes the relationship among several food chains

Why does a food web provide a better picture of the energy flow situation in an ecosystem than a food chain?

Organisms don't eat only one type of food, nor are they eaten by one type of predator. A food web gives a better description of the big picture.

Pyramid of Energy:


shows the amount of energy available at each trophic level; a larger rectangle represents more energy

10% rule: only 10 percent of the energy at any trophic level will be available to organism at the next trophic level. (Only 10% of the energy gets passed to the next trophic level.)

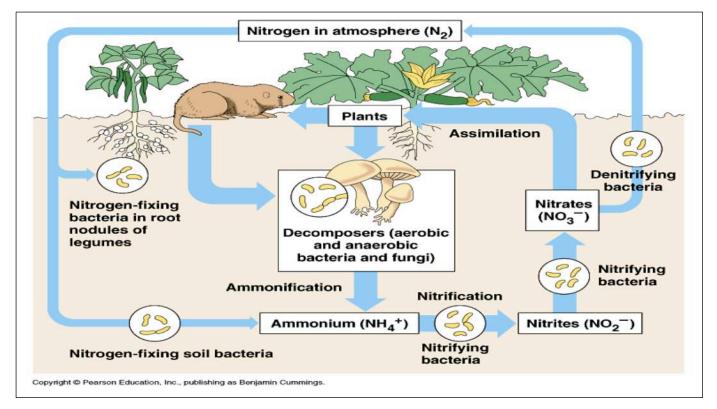
Why is only about 10% of the energy available at one trophic level passed to the next trophic level?

- 1. Organisms use energy for their own life processes.
- 2. Organisms excrete some of what they eat, making it unavailable to the next level.
- 3. Organisms frequently don't eat the entire organism (organisms that eat plants may not eat the roots.)

to describe biotic interactions in an ecosystem (e.g. competition, predation, symbiosis) (B.4.2.2)

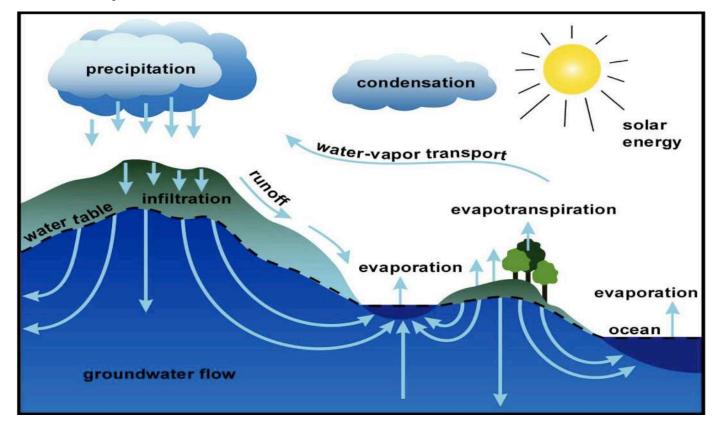
Competition:

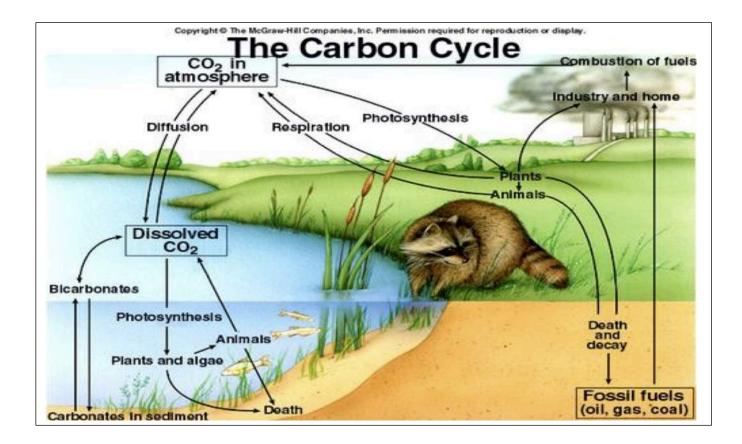
when individuals or groups of organisms compete for similar resources such as territory, mates, water, and food in the same environment

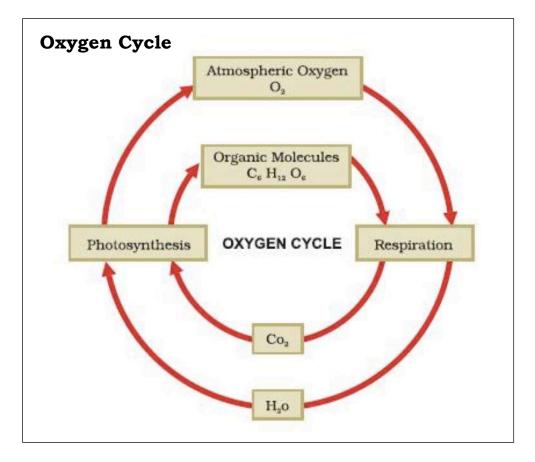

Predation (feeding):

a relationship when one organism captures and feeds on another

Symbiosis: a long-term relationship between organisms of different species; classified as either parasitism, mutualism, or commensalism based on which organism(s) benefits.

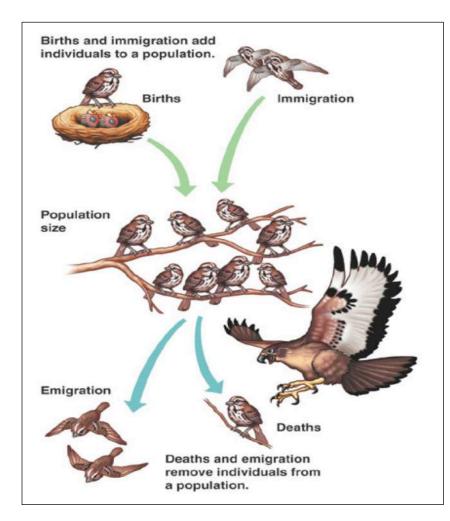

Type of Symbiosis	Who Benefits?	Example
Mutualism	Both organisms benefit from the relationship.	Oxpeckers (birds that eat insects off the backs of large mammals in Africa) benefit because they are obtaining food. The mammals benefit because the birds are eating insects that may cause disease.
Commensalism	One organism benefits; the other organism isn't harmed, not does it benefit from the relationship	Barnacle attach themselves to whales so that they can travel around the ocean and have more feeding opportunities. The whales are unaffected.
Parasitism One organism benefits while the other is harmed. A good parasite does not kill its host (at least not right away).		A tapeworm benefits by living in the intestines of mammals. The tapeworm benefits by having nutrients constantly available. The mammal is harmed because it is deprived of nutrients.


to describe how matter recycles through an ecosystem (i.e. water cycle, carbon cycle, oxygen cycle, nitrogen cycle) (B.4.2.3)



Nitrogen Cycle

Water Cycle



to describe how ecosystems change in response to natural and human disturbances (e.g. climate change, introduction of nonnative species, pollution, fires) (B. 4.2.4)

Natural/Human Disturbance	Effect on Ecosystems	Example
Climate change	 populations which are adapted to particular climates may be unable to live in certain areas melting polar ice caps may cause sea levels to rise, flooding the coastal areas that hold many of Earth's unique ecosystems 	Many human activities, from energy and food production to transportation, increase the level of greenhouse gases in the atmosphere. Greenhouse gases are atmospheric gases such as water vapor, carbon dioxide, and methane that trap heat energy near the surface of the Earth causing a phenomenon known as the greenhouse effect .
Introduction of nonnative species (also called invasive species)	 Generally nonnative species: have fewer predators or no predators in their new ecosystem use more of the ecosystem's resources or use available resources more effectively may reduce other endemic populations directly, through predation 	The round goby is a small white fish that was first reported in PA waters in 1996. This nonnative species was brought to the Great Lakes in ships traveling from the Black Sea. The round goby has an advantage over other species because it is able to feed even in complete darkness. Its introduction into the Great Lakes has resulted in the decline in the population of other species of fish, especially the mottled sculpin.
Pollution	Pollution is the addition of substances, objects, or other factors that cause harmful changes to an ecosystem. Agricultural runoff is a type of pollution that can result in eutrophication . Eutrophication refers to the changes that occur to an aquatic ecosystem as a result of added nutrients. In addition to chemicals, excess noise and light can also be forms of pollution.	Agricultural runoff can act as fertilizer for aquatic plants. In response to added nutrients, algae populations may increase rapidly causing an algal bloom . This increase in algae can limit light penetration and reduce photosynthesis in other aquatic plants. Once the population of algae has used up all the excess nutrients, some of the population die. This increases the food supply for decomposers which increases their population. The increase in decomposers results in a depletion of oxygen in the water which can lead to the death of fish and other aquatic animals.
Habitat destruction	A habitat is an ecosystem area that provides the resources a species needs to survive and reproduce. Different species have different habitat requirements. Habitat destruction is currently ranked as the primary cause of species extinction worldwide.	Human error or lightning strikes can both cause fires that can have devastating consequences to the organisms living in grasslands or forests. Also, intentional deforestation (in the form of fires, clear- cutting, and unsustainable logging practices) is threatening a wide range of plant and animal species as their habitats are destroyed.

to describe the effects of limiting factors on population dynamics and potential species extinction (B.4.2.5)

According to the graphic below, **<u>birth and death rates</u>** affect the population size, in addition to immigration and emigration rates.

ecarrying capacity

Limiting factors are any biotic or abiotic resource that limits the size of a population.

So, what types of factors would affect the birth and death rates of the bird population in the graphic (thereby limiting the size of the population)?

- availability of food
- population of predators
- water
- shelter
- disease
- weather events

Carrying capacity is the maximum population that an ecosystem can support.

A size of a population generally fluctuates around the carrying capacity of the ecosystem.