

OStructure and Function

Learning Target

OI can describe the experiments of major scientists in determining both the structure of DNA and the Central Dogma.

OFrederick Griffith, British scientist, 1928

- OHis guiding question was "How do certain bacteria cause pneumonia?"
- ODesigned experiments to figure this out using mice and two slightly different strains of bacteria

Griffith's Experiment

Griffith's Experiment

OGriffith called the process of passing the disease causing trait to the harmless bacteria "transformation"

 Oswald Avery, Canadian biologist, 1944

- O Decided to repeat Griffith's work
- Made extract from heat killed bacteria; then treated this with enzymes that could destroy some molecules. Transformation still occurred.
- O Discovered that DNA stores and transmits genetic information from generation to generation

Oswald

DNA Pioneers

OHershey-Chase

Countersy of Cold Spring Harbor Laboratory Archives. Noncommendal, educational use only.

OTwo American scientists: Alfred Hershey and Martha Chase

OCollaborated on studying viruses that infect living organisms

OBacteriophage: type of virus that infects bacteria Hershey-Chase

Ohttp://highered.mcgrawhill.com/olcweb/cgi/pluginpop.cgi?it =swf::535::535::/sites/dl/free/007 2437316/120076/bio21.swf::Hershe y%20and%20Chase%20Experiment

Hershey-Chase Experiments

a. Viral DNA is labeled (yellow).

b. Viral capsid is labeled (yellow).

OErwin Chargaff, American biochemist

- OPuzzled by relationship between DNA's nucleotides
- ODiscovered that guanine and cytosine are nearly equal in any DNA sample; same went for adenine and thymine

Chargaff's Rules

parts and manual of Address means being from the design of a design of the second seco

ORosalind Franklin,

OBritish scientist, 1952
OStudied DNA using xray diffraction
ORecorded DNA pattern
ODied of radiation cancer before she could have received Pulitzer Prize

Rosalind Franklin

Watson and Crick

- O James Watson, American biologist
- O Francis Crick, British physicist
- Used Franklin's xray diffraction (without her permission) to develop the double helix model of the structure of DNA

Learning Target

OI can describe the basic structure and function of DNA.

DNA Structure Video

Ohttp://www.youtube.com/watch?v=
sf0YXnAFBs8

Structure & Function of DNA

ODNA is:

- A complex polymer made of deoxyribonucleic acid
- Nucleic Acids are made of nucleotides

Nucleotides

© scienceaid.co.uk

DNA Structure

ODouble Helix

Two strands twisted around each other

Resembles a winding staircase

DNA Structure

OEach side of the double helix is made of alternating sugar (deoxyribose) and phosphates

 Each strand is linked to the other by nitrogen bases

DNA Nitrogen Bases

Four nitrogen bases make up the "stairs" of the DNA double helix
Adenine
Guanine
Cytosine
Thymine

DNA Nitrogen Bases

OAdenine and Guanine are purines

 Made of two rings of carbon and nitrogen atoms

OCytosine and Thymine are pyrimidines

Made of one carbon and nitrogen ring

DNA Nitrogen Bases

Base Pairing Rules

- One Purine must pair with one Pyrimidine
- OThe pairings are very specific; follow Chargaff's Rules
- OAdenine and Thymine always pair
- OCytosine and Guanine always pair
- OA and T form two hydrogen bonds
- OC and G form three hydrogen bonds

Base Pairing Rules

Guanine

Cytosine

Adenine

Thymine

DNA Replication

OThe process of making a copy of DNA is called DNA replication

ORemember that DNA replication occurs during the "S" phase of interphase prior to the cell entering mitosis or meiosis **DNA Replication**

Ohttp://www.youtube.com/watch?v=
zdDkiRw1PdU

DNA Replication

OReplication is semi-conservative meaning that each new double helix consists of an old strand of DNA

O DNA helicases unwind double helix by breaking hydrogen bonds O Proteins attach to each strand to hold them apart and prevent them from twisting back O This area is called a replication fork

 Within the replication forks, DNA polymerase moves along each strand adding nucleotides to exposed nitrogen bases

- OThese are added according to base pairing rules
- OAs DNA polymerase moves along, two new double helices are formed

- O The two strands are called the leading strand and the lagging strand.
- New nucleotides are always added in the 5' to 3' direction
- O The leading strand goes very smoothly because it is in the 5' to 3' direction
- O The lagging strand goes from the 3' to 5' direction
 - So its nucleotides are placed in small sections called Okazaki fragments. These are placed in the 5' to 3' direction

- ODNA polymerase remains attached until all the DNA is copied
- OIt detaches once replication is complete
- OTwo new DNA strands are made
- OEach new double helix contains a new strand and an old strand
- OThe two new double helices are identical to each other.

ODNA polymerases can proofread and can back track a bit to correct any errors.

Only 1 error per 1 billion nucleotides.

Learning Target

OI can describe the basic function and structure of mRNA, tRNA, amino acids and proteins.

OI can use codon charts to determine amino acid sequences of example polypeptides.
DNA to RNA to Proteins

- ODNA, the genetic code, is made in the nucleus.
- ODNA carries the instructions for making proteins.
- OProteins are made in ribosomes in the cytoplasm.
- OHow does this happen? RNA

DNA to RNA to Proteins

- ORNA takes the genetic code from the nucleus to the ribosomes in a process called transcription.
- ORNA differs from DNA in 3 ways:
 - It is a single strand (alpha helix)
 - It contains the sugar ribose
 - It has a different nitrogen base: uracil
 OUracil replaces thymine

RNA

OThree types of RNA

- mRNA-messenger RNA carries copies of protein instructions
- rRNA-ribosomal RNA; on the ribosome
- tRNA-transfer RNA; transfers each amino acid to the ribosome as specified by the genetic code

Transcription

OTranscription begins when RNA polymerase binds to DNA and separates the DNA strand

ORNA polymerase uses one strand of DNA as a template to make into one strand of RNA Transcription

OThe RNA polymerase (an enzyme) finds the promotor region on the DNA.

OPromotors signal where the enzyme should attach onto the DNA.

DNA Transcription

- ODNA must be copied to messenger RNA (mRNA)
- OmRNA goes from nucleus to the ribosomes in cytoplasm
- OmRNA complements known as codons
 - Only 3 nucleotide "letters" long

O<u>Remember</u> RNA has uracil (U) instead of thymine (T)!

Transcription – Step I

A C G T A T C G C G T A T G C A T A G C G C A T

Template DNA Strands

Transcription – Step II

ACGTATCGCGTAUGCAUAGCGCAU

Template DNA is Matched Up with Complementary mRNA Sequences

Transcription – Step III

mRNA leaves nucleus and goes to ribosomes

A new complementary RNA strand is made (rRNA)

RNA Editing

ORNA needs to be edited.

ODNA has sequences of DNA not necessary for making proteins. These are called introns.

- OThe DNA sequences needed for transcription are called exons.
- OBoth are copied but the introns are cut out before leaving the nucleus.

Transcription Reminders

OThe template strand is the DNA strand being copied

OThe rRNA strand is the same as the DNA strand except U's have replaced T's

- ODifferent proteins have different functions
- OIt is estimated that each human cell has more than 30,000 genes
- OEach gene is a code for making a specific protein

- Sequences of nitrogen bases give the code for making a specific protein
- OProteins are made from 20 amino acids and DNA has only 4 nitrogen bases
- O How do these small numbers make up the thousands of combinations to make a protein?

- OIt takes sequences of three bases to provide the necessary combinations to make the proteins
- OEach set of three nitrogen bases is called a codon (or triplet code)
- OThe order of nitrogen bases can determine the type and order of amino acids in a protein

OSixty four codons are possible
O60 are specific amino acids
One is a start code
OThree are stop codes

FIRST LETTER	U	SECOND C	LETTER A	G	THIRD 1 LETTER
Γ	Pheny lalanine	Serine	Tyrosine	Cysteine	U
υ	Phenylalanine	Serine	Tyrosine	Cysteine	С
· · ·	Leucine	Serine	Stop	Stop	A
L	Leucine	ne Serine Stop Tryptophan	G		
Γ	Leucine	Proline	Histidine	Arginine	U
_	Leucine	Proline	Histidine	Arginine	С
С	Leucine	Proline	Glutamine	Arginine	A
L	Leucine	Proline	Glutamine	Arginine	G
Г	Isoleucine	Threonine	Asparagine	Serine	U
	Isoleucine	Threonine	Asparagine	Serine	С
A	Isoleucine	Threonine	Lysine	Arginine	A
	(Start) Methionine	Threonine	Lysine	Arginine	G
Г	Valine	Alanine	Aspartate	Glycine	U
	Valine	Alanine	Aspartate	Glycine	c
G	Valine	Alanine	Glutamate	Glycine	A
	Valine	Alanine	Glutamate	Glycine	G

Transcription is done...what now?

Now we have mature mRNA transcribed from the cell's DNA. It is leaving the nucleus through a nuclear pore. Once in the cytoplasm, it finds a ribosome so that translation can begin.

We know how mRNA is made, but how do we "read" the code?

Protein Translation

- OModified genetic code is "translated" into proteins
- OCodon code is specific, but redundant!
 - 20 amino acids
 - 64 triplet (codon) combinations

Protein Translation

- OmRNA is transcribed in the nucleus; then enters the cytoplasm and attaches to a ribosome
- OTranslation begins at AUG (start codon)
- OEach tRNA has an anticodon that is complementary to the codon on the mRNA

Protein Translation

OThe ribosome positions the start codon (AUG) to attract its anticodon.

OThis process continues until the strand is translated.

OThe tRNA floats away from the ribosome to allow another to take its place.

tRNA

tRNA structure

O3-base code (triplet) is an "anticodon"

- OProtein molecule
- OAttached amino acid is carried from cytoplasm to ribosomes

tRNA Function

OAmino acids must be in the correct order for the protein to function correctly

OtRNA lines up amino acids using mRNA code

Translation

OSecond stage of protein production
 OmRNA is on a ribosome
 OtRNA brings amino acids to the ribosome

Ribosomes

O2 subunits, separate in cytoplasm until they join to begin translation

- Large subunit
- Small subunit
- OContain 3 binding sites

E
P
A

The Genetic Code

100	on				position	•		p
	U		С		Α		G	
ſ	UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys
J	UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys
1	UUA	Leu	UCA	Ser	UAA	Stop	UGA	Stop
	UUG	Leu	UCG	Ser	UAG	Stop	UGG	Trp
[CUU	Leu	CCU	Pro	CAU	His	CGU	Arg
	CUC	Leu	CCC	Pro	CAC	His	CGC	Arg
	CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
	CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
[AUU	lle	ACU	Thr	AAU	Asn	AGU	Ser
1	AUC	lle	ACC	Thr	AAC	Asn	AGC	Ser
1	AUA	lle	ACA	Thr	AAA	Lys	AGA	Arg
	AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg
ſ	GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly
3	GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly
1	GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly
	GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly

ACGATACCCTGACGAGCGTTAGCTATCG UGCUAUGGGACUG

	-				~			
	L	J	C	2	A	۱	G	i
υ	UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys
	UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys
	UUA	Leu	UCA	Ser	UAA	Stop	UGA	Stop
	UUG	Leu	UCG	Ser	UAG	Stop	UGG	Trp
с	CUU	Leu	CCU	Pro	CAU	His	CGU	Arg
	CUC	Leu	CCC	Pro	CAC	His	CGC	Arg
	CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
	CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
•	AUU	lle	ACU	Thr	AAU	Asn	AGU	Ser
	AUC	lle	ACC	Thr	AAC	Asn	AGC	Ser
	AUA	lle	ACA	Thr	AAA	Lys	AGA	Arg
	AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg
G	GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly
	GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly
	GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly
	GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly

Which codon codes for which amino acid?

OGenetic code- inventory of linkages between nucleotide triplets and the amino acids they code for

OA gene is a segment of RNA that brings about transcription of a segment of RNA

Transcription vs. Translation Review

Transcription

- Process by which genetic information encoded in DNA is copied onto messenger RNA
- O Occurs in the nucleus
- O DNA -mRNA

Translation

- Process by which information encoded in mRNA is used to assemble a protein at a ribosome
- Occurs on a Ribosome
- OmRNA protein