NAME			

- Step 1). Replicate the DNA Strand labeled A creating strand B in the left column
- Step 2). Transcribe DNA Strand A into mRNA codons
- Step 3). **Translate** the mRNA codons into tRNA anticodons.
- Step 4). Decode Use the mRNA codons to find amino acids on mRNA table

DNA Strand B	DNA Strand A	Transcribe mRNA	Translate tRNA	Amino Acid
	T			
	A			
	С			
	G			
	G G			
	С			
	T			
	A			
	C			
	A A			
	С			
	T			
	Т			
	A			
	A			
	С			
	A			
	G			
	A			
	C			
	A			

First	SECOND BASE			Third	
Base	U	С	A	G	Base
	UUU	UCU	UAU	UGU	U
	Phenylalanine	Serine	Tyrosine	Cysteine	
U	UUC	UCC	UAC	UGC	C
	Phenylalanine	Serine	Tyrosine	Cysteine	
	UUA	UCA	UAA	UGA	Α
	Leucine	Serine	STOP	STOP	
	UUG	UCG	UAG	UGG	G
	Leucine	Serine	STOP	Tryptophan	
	CUU	CCU	CAU	CGU	U
	Leucine	Proline	Histidine	Arginine	
С	CUC	CCC	CAC	CGC	C
	Leucine	Proline	Histidine	Arginine	
	CUA	CCA	CAA	CGA	Α
	Leucine	Proline	Glutamine	Arginine	
	CUG	CCG	CAG	CGG	G
	Leucine	Proline	Glutamine	Arginine	
	AUU	ACU	AAU	AGU	U
A	Isoleucine	Threonine	Asparagine	Serine	
	AUC	ACC	AAC	AGC	C
	Isoleucine	Threonine	Asparagine	Serine	
	AUA	ACA	AAA	AGA	A
	Isoleucine	Threonine	Lysine	Arginine	
	AUG	ACG	AAG	AGG	G
	START	Threonine	Lysine	Arginine	
	GUU	GCU	GAU	GGU	U
G	Valine	Alanine	Aspartate	Glycine	G
	GUC	GCC	GAC	GGC	С
	Valine	Alanine	Aspartate	Glycine	,
	GUA	GCA	GAA	GGA	Α
	Valine	Alanine	Glutamate	Glycine	
	GUG	GCG	GAG	GGG	G
	Valine	Alanine	Glutamate	Glycine	

To use the amino acid chart:

Find the first letter of the mRNA codon on the left column.

Find the second letter of the mRNA codon on the upper column.

Draw line from both columns until the lines meet.

Now find the third letter from the mRNA codon in the right column and draw a line until it intersects with the other 2 lines.

Fill in the blank with the terms (1 point each)

Phosphate	Bases	Helix
Codons	Proteins	Amino Acids
Deoxyribose	Complementary	Cytosine
Thymine		

1.	DNA molecules contain information for building specific (1). In a
2.	three-dimensional view a DNA molecule looks like a spiral staircase;
3.	this is correctly called a (2). The constant parts of DNA molecules are
4.	the (3) and (4) molecules, forming the DNA-ladder uprights, or
5.	backbones. The information of DNA is actually coded in the sequence
	of nitrogen containing (5), which are bound together to form the "rungs"
6.	of the DNA ladder. When the four DNA bases are combined in
7.	different three-base sequences called $(\underline{6})$, different $(\underline{7})$ of the protein are
0	called for. It is said that the N-containing bases of DNA are (8), which
8.	means that only certain bases can fit together or interact together.
9.	Specifically this means that (9) can only bind with guanine, and adenine
10.	can only bind with (10).

Answer in sentences:

If a structural gene contains 300 DNA nucleotides, how many amino acids will be used i the protein synthesis?
If a protein has 150 amino acids, how many DNA nucleotides would make up the structural gene?
Describe in a sentence the relationship between the gene sequence and the tRNA sequence? (Look at both columns how are they similar or different)