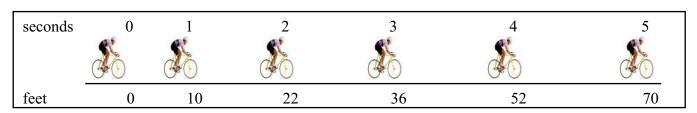

The connection between distance, velocity, and acceleration is one of the important themes of differential calculus. The relationship can be stated as follows:

- Velocity is change in distance divided by change in time.
- Acceleration is change in velocity divided by change in time.

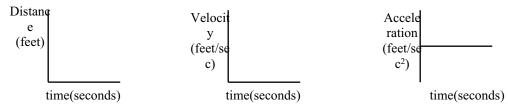
The following diagrams show the position of a cyclist riding for a 5 second time interval. The total distance traveled at each 1 second interval is given.

seconds	0	1	2	3	4	5
feet	0	14	28	42	56	70

1) Use the data above to sketch distance, velocity, and acceleration graphs.



2) Determine the equations of the graphs you sketched:

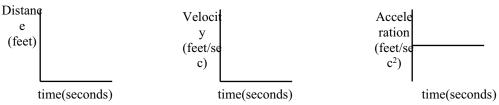

Distance:

Velocity:

Acceleration:

1) Use the data above to sketch distance, velocity, and acceleration graphs.

2) Determine the equations of the graphs you sketched:


Distance:

Velocity:

Acceleration:

1) Use the data above to sketch distance, velocity, and acceleration graphs.

2) Determine the equations of the graphs you sketched:

Distance:

Velocity:

Acceleration: