Show all work for each problem.

x	f(x)	g(x)	f'(x)
-4	0	- 9	5
-2	4	-7	4
0	6	-4	2
2	7	-3	1
4	10	-2	3

The table above gives values of the differentiable functions f and g, and f', the derivative of f, at selected values of x. If $g(x) = f^{-1}(x)$, what is the value of g'(4)?

- (A) $-\frac{1}{3}$ (B) $-\frac{1}{4}$ (C) $-\frac{3}{100}$ (D) $\frac{1}{4}$ (E) $\frac{1}{3}$

Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and g(2) = 1, what is the value of g'(2)?

- (A) $\frac{1}{13}$ (B) $\frac{1}{4}$ (C) $\frac{7}{4}$ (D) 4 (E) 13

- Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(3)?
 - (A) $-\frac{1}{2}$
 - (B) $-\frac{1}{8}$
 - (C) $\frac{1}{6}$
 - (D) $\frac{1}{3}$
 - (E) The value of g'(3) cannot be determined from the information given.

- The functions f and g are differentiable, and f(g(x)) = x for all x. If f(3) = 8 and f'(3) = 9, what are the values of g(8) and g'(8)?
 - (A) $g(8) = \frac{1}{3}$ and $g'(8) = -\frac{1}{9}$
 - (B) $g(8) = \frac{1}{3}$ and $g'(8) = \frac{1}{9}$
 - (C) g(8) = 3 and g'(8) = -9
 - (D) g(8) = 3 and $g'(8) = -\frac{1}{9}$
 - (E) g(8) = 3 and $g'(8) = \frac{1}{9}$