AP Calculus Derivatives of Inverse Functions HW

Name

Show all work for each problem.

х	f(x)	g(x)	f'(x)
-4	0	- 9	5
-2	4	-7	4
0	6	-4	2
2	7	-3	1
4	10	- 2	3

The table above gives values of the differentiable functions f and g, and f', the derivative of f, at selected values of x. If $g(x) = f^{-1}(x)$, what is the value of g'(4)?

(A)
$$-\frac{1}{3}$$

(B
$$-\frac{1}{4}$$

(C)
$$-\frac{3}{100}$$

(A)
$$-\frac{1}{3}$$
 (B) $-\frac{1}{4}$ (C) $-\frac{3}{100}$ (D) $\frac{1}{4}$

(E)
$$\frac{1}{3}$$

$$g'(4) = \frac{1}{f'(g(4))}$$

$$f'(-2) = \frac{1}{4}$$

Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and g(2) = 1, what is the value of g'(2)?

(A)
$$\frac{1}{13}$$

$$\sqrt{(B)} \frac{1}{4}$$

(C)
$$\frac{7}{4}$$

$$g'(2) = \frac{1}{f'(g(2))}$$

$$\frac{\chi |f(x)|}{1 |Q|} \frac{\chi |g(x)|}{2 |I|}$$

$$f'(x) = 3x^2 + 1$$

 $f'(x) = 3(x)^2 + 1 = 4$

Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(3)?

(E) The value of g'(3) cannot be determined from the information given.

$$=$$
 $-\frac{1}{2}$

The functions f and g are differentiable, and f(g(x)) = x for all x. If f(3) = 8 and f'(3) = 9, what are the values of g(8) and g'(8)?

(A)
$$g(8) = \frac{1}{3}$$
 and $g'(8) = -\frac{1}{9}$

(B)
$$g(8) = \frac{1}{3}$$
 and $g'(8) = \frac{1}{9}$

(C)
$$g(8) = 3$$
 and $g'(8) = -9$

(D)
$$g(8) = 3$$
 and $g'(8) = -\frac{1}{9}$

(E)
$$g(8) = 3$$
 and $g'(8) = \frac{1}{9}$

$$\frac{x|f(x)}{3|8} \frac{x|g(x)}{8|3}$$

$$g(8) = 3$$

$$g'(\epsilon) = \frac{1}{f'(g(\epsilon))} = \frac{1}{9}$$