## Derivative of Trig Functions AP 2013 2A

AP Calculus

Name: ANSWEYS

Work on the problem below. Note: We don't know yet how to do part b. Why is that? Think about what we need to learn in order to be able to do part b. You may use a calculator.

On a certain workday, the rate, in tons per hour, at which unprocessed gravel arrives at a gravel processing plant is modeled by  $G(t) = 90 + 45\cos\left(\frac{t^2}{18}\right)$ , where t is measured in hours and  $0 \le t \le 8$ . At the beginning of the workday (t = 0), the plant has 500 tons of unprocessed gravel. During the hours of operation,  $0 \le t \le 8$ , the plant processes gravel at a constant rate of 100 tons per hour.

- (a) Find G'(5). Using correct units, interpret your answer in the context of the problem.
- (b) Find the total amount of unprocessed gravel that arrives at the plant during the hours of operation on this workday.
- (c) Is the amount of unprocessed gravel at the plant increasing or decreasing at time t = 5 hours? Show the work that leads to your answer.
- (d) What is the maximum amount of unprocessed gravel at the plant during the hours of operation on this workday? Justify your answer.

$$\omega) G'(t) = -45 \sin\left(\frac{t^{2}}{18}\right) \cdot 2t$$

$$G'(5) = -45 \sin\left(\frac{25}{18}\right) \cdot 2(5) = -24.588$$

The rate at which unproc. gravel is arriving at t=5 is decreasing by 24.588 tens/how each hour

b) 
$$\int_{0}^{8} (90 + 45\cos(\frac{t^{2}}{18})) dt = 825.551 + \cos$$

c)  $G(5) = 90 + 45 \cos(\frac{25}{18}) = 98.141 + \cos/hr$ Since plant processes gravel at 100 tens/hr, at t=5 the aint of unprocessed gravel is decreasing.

Amount of gravel 
$$A(x) = 500 + \int_{0}^{\infty} (G(t) - 100) dt$$

$$A'(x) = G(x) - 100$$

$$0 = 90 + 45 \cos\left(\frac{x^2}{18}\right) - 100$$

| 2     | A(x)    |
|-------|---------|
| 0     | 500     |
| 4.923 | 635.376 |
| 8     | 525,551 |

The max and.

of unprocessed

gravel during

the workday

18 635.376 tons

To find values, can use home soven a change upper limit of s

or use 
$$y_1 = 500 + \int_{0}^{x} (90 + 45 \cos(\frac{x^2}{18}) - 100) dx$$
  
+ wok at table