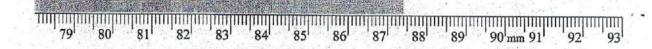
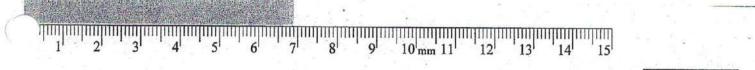
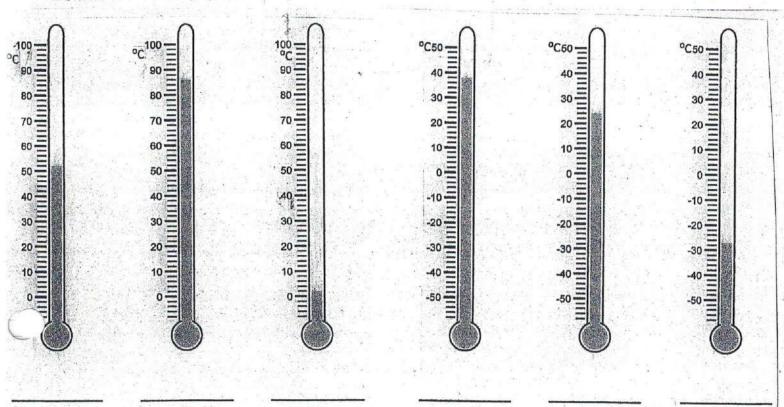
1			

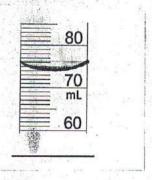

Date

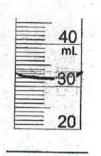
Period#

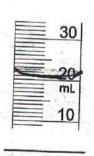

Physical Science Reading Scientific Instruments Practice Mid-term Review

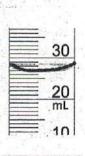
For each of the following instruments write the indicated reading on the line provided. Be sure to include the correct units.

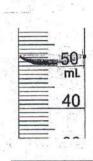

Length - Meter stick

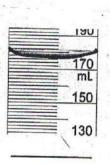


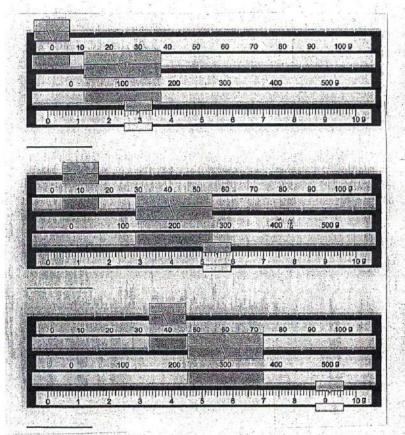


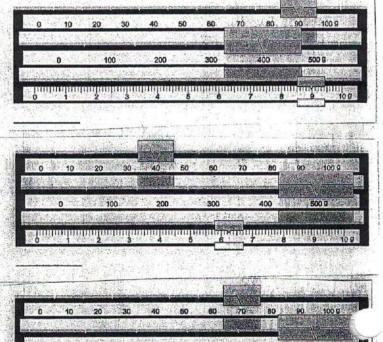

Temperature - Thermometer




Volume - Graduated Cylinder







Mass - Triple Beam Balance

Name		Date	Period#
		al Science	
		ctice Problems	
	Miq-ter	m Review	
Directions: Solve each	problem below. Show	v your work and cire	cle your answers.
Example: A student hacm ³ . What is the densit	ns a sample of aluminu By of aluminum?	ım that has a mass o	f 27 g and a volume of 10
Density = mass/vo	lume		
Density = $27 g / 10$	cm³		
Density = 2.7 g/cm	13		
 A loaf of bread has a bread? 	n mass of 500 g and vo	lume of 2500 cm ³ . V	Vhat is the density of the
	V		
2. A block of wood has the block of wood?	a mass of 6.0 g and a	volume of 12.0 cm3	What is the density of
3. The density of a subs	stance is 4.0 g/cm3. If	a sample of the sub	stance has a volume of 25
3. The density of a subs cm3, then what is its	stance is 4.0 g/cm3. If mass?	a sample of the sub	stance has a volume of 25

4. A bottle of water has a volume of 560 mL and a mass of 1250 g. What is the density?

- 5. You have a lead ball with a mass of 420 g. The density of lead is 10.5 g/cm3. What is the volume of the ball?
- 6. A student has a rectangular block. It is 2 cm wide, 3 cm tall, and 25 cm long. It has a mass of 600 g. First, calculate the volume of the block:

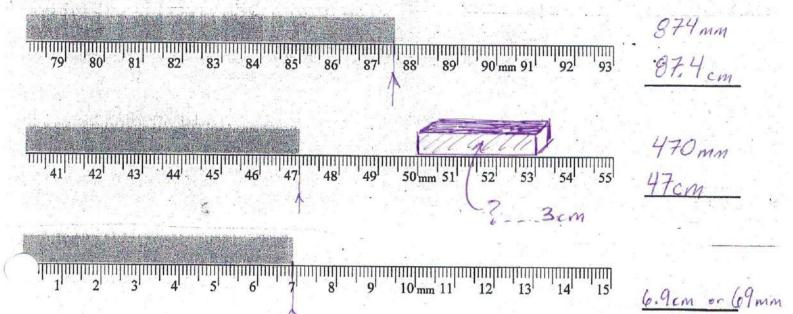
Then, use that answer to determine the density of the block:

Use the data below to calculate the density of each unknown substance. The use the density chart to the right to determine the identity of each substance.

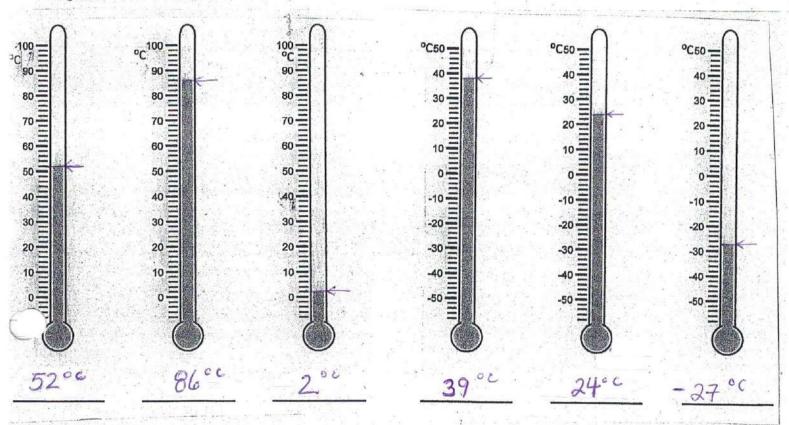
Density (g/cm ³)
19.3
13.5
11.4
7.87
3.7
1.7-2.0
0.66-0.69
0.00119

Mass (g)	Volume (cm³)	D= m/V	Density (g/cm³)	Substance
4725 g	350 cm ³	D = 4725 g 350 cm ³	D= 13.5 g/cm ³	
171 g	15 cm ³			
148 g	40 cm ³			
475 g	250 cm ³	V 1 - 1 2 - 1		A Region of Table of
680 g	1000 cm ³			

	Key	
Name	 K / C V	4

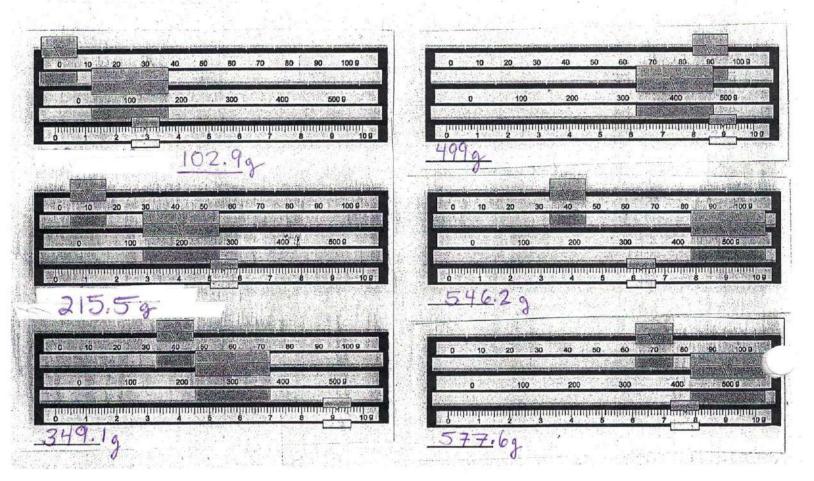

Date

Period#____


Physical Science Reading Scientific Instruments Practice Mid-term Review

For each of the following instruments write the indicated reading on the line provided. Be sure to include the correct units.

Length - Meter stick


Temperature - Thermometer

Volume – Graduated Cylinder

Mass - Triple Beam Balance

Name	Date	Period#
Department of	Physical Science	

Department of Motor Vehicles

Physical Science Density Practice Problems Mid-term Review

D= m/V

Directions: Solve each problem below. Show your work and circle your answers.

Example: A student has a sample of aluminum that has a mass of 27 g and a volume of 10 cm³. What is the density of aluminum?

Density = mass/volume

Density = $27 g / 10 cm^3$

Density = 2.7 g/cm^3

1. A loaf of bread has a mass of 500 g and volume of 2500 cm³. What is the density of the bread?

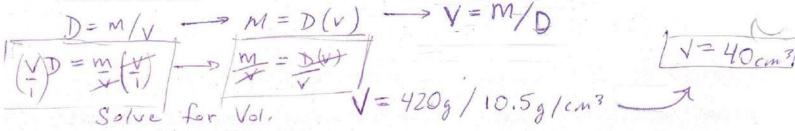
$$D = M/V$$

$$D = 500g/2500cm^{7}$$

$$D = 0.2g/cm^{3}$$

2. A block of wood has a mass of 6.0 g and a volume of 12.0 cm3. What is the density of the block of wood?

3. The density of a substance is 4.0 g/cm3. If a sample of the substance has a volume of 25 cm3, then what is its mass?


$$D = \frac{m}{v} \longrightarrow (\frac{v}{l})D = \frac{m}{v}(\frac{v}{l}) \longrightarrow m = Dv$$

$$M = (\frac{4.0g}{cm^3})(25cm^3)$$

$$\boxed{m = 100 \text{ gram s}}$$

4. A bottle of water has a volume of 560 mL and a mass of 1250 g. What is the density?

5. You have a lead ball with a mass of 420 g. The density of lead is 10.5 g/cm3. What is the volume of the ball?

6. A student has a rectangular block. It is 2 cm wide, 3 cm tall, and 25 cm long. It has a mass of 600 g. First, calculate the volume of the block:

Then, use that answer to determine the density of the block:

Use the data below to calculate the density of each unknown substance. The use the density chart to the right to determine the identity of each substance.

Substance	Density (g/cm ³)
Gold	19.3
Mercury	13.5
Lead	11.4
Iron	7.87
Aluminum	3.7
Bone	1.7-2.0
Gasoline	0.66-0.69
Air (dry)	0.00119

Mass (g)	Volume (cm³)	D= m/V	Density (g/cm³)	Substance
4725 g	350 cm ³	D= 4725 g 350 cm ³	D= 13.5 g/cm ³	Mercury
171 g	15 cm ³	171/15	11.49/cm3:	Lead
148 g	40 cm ³	1488/40cm3	3.79/cm3	Aluminum
475 g	250 cm ³		1.9 g/cm3	Bone
680 g	1000 cm ³	6808/1000cm3	0.68 g/cm3	Gasoline