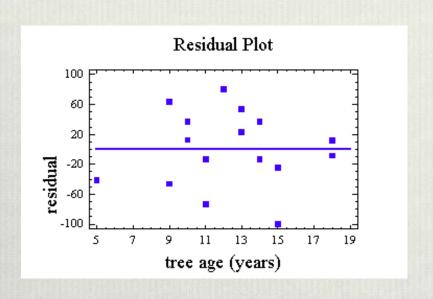
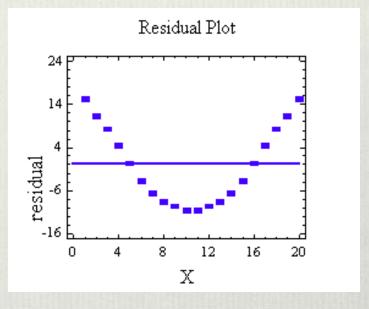
Residuals, Residual Plots, and R²

Homework: Pages 192-194 #1, 3, 5, 7, 11, 28


Review


- A linear model is used to predict an individual's annual bonus based on the number of years with the company. Sandra told her husband that her residual was approximately -\$862. Explain what this means.
- ❖ The LSRL used to predict the bonus based on the number of years of service is bonus = 3650 + 52.56(years). If Sandra was expecting to get a bonus of \$4,500, how long has she worked with the company?

Residual Plots

- A residual plot is a graph that shows the residuals on the vertical axis and the independent variable on the horizontal axis.
- ❖ If the points in a **residual plot** are randomly dispersed around the horizontal axis, a linear regression model is appropriate for the data.
- If the residuals form a pattern, a non-linear model is more appropriate.

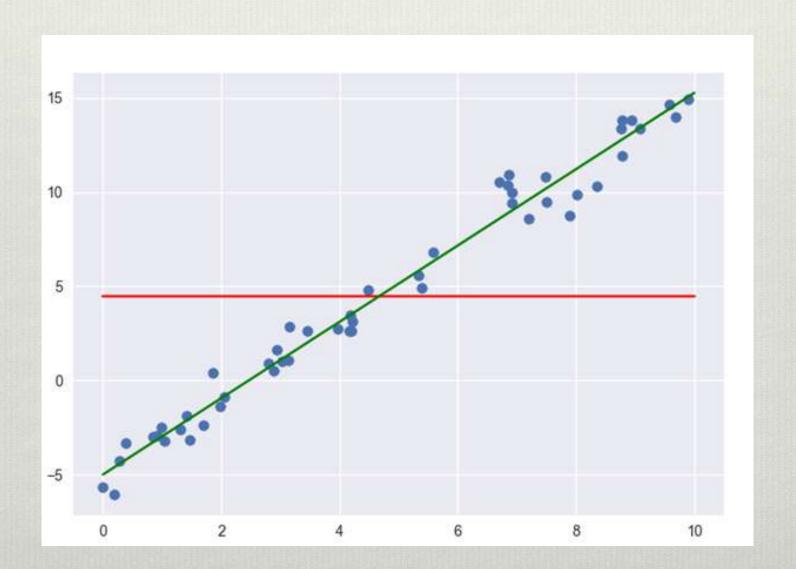
Examples

- Residual Plot A shows random scatter- the linear model is a good fit for the data
- Residual Plot B shows a pattern- the linear model is not a good fit for the data

Pain Relief vs. Dosage Revisited

- * Recall our example of dosage and pain relief.
- ❖ If you knew nothing about regression, what would you predict the pain relief would be for an individual?

Pain Relief vs. Dosage Revisited


- * What was the sum of the squared residuals from the pain relief vs. dosage example?
- Complete the table below:

x	y	$\widehat{m{y}}$	$y-\widehat{y}$	$(y-\widehat{y})^2$	\overline{y}	$y - \overline{y}$	$(y-\overline{y})^2$

\mathbb{R}^2

- Also referred to as the coefficient of determination.
- * R² is the percent reduction of the squared residuals when comparing the regression line to a line through the mean of the y-values

R² Explained

Interpreting R²

- Approximately _____ % of the variability in the <u>y-variable</u> can be explained by the linear regression of the <u>y-variable</u> on the <u>x-variable</u>.
- * Example: Approximately 91.56% of the variability in weight can be explained by the regression of height on weight.