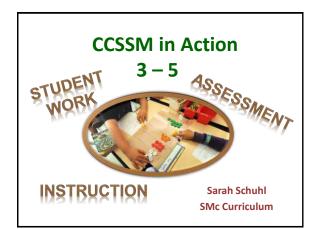
COSA Common Core State Standards Regional Series "Mathematics in Action"

A Statewide Regional Series for District and School Leaders of CCSS

Elementary (3-5) Mathematics Session

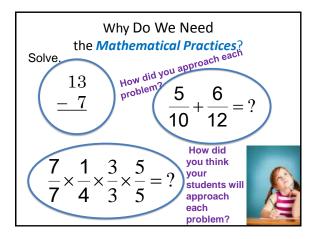


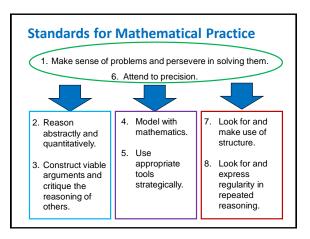
Locations:

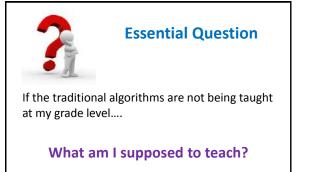
April 14, 2014 – Eagle Crest Resort, Redmond, OR April 17, 2014 – Winston Community Center, Winston, OR April 28, 2014 – Linn County Expo Center, Albany, OR April 30, 2014 – Medford, OR May 6, 2014 - Convention Center, Pendleton, OR

Mathematics Presenter:

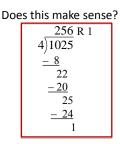
Sarah Schuhl, SMc Curriculum, sarahschuhl@yahoo.com

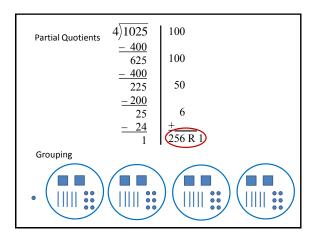


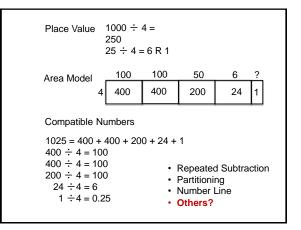

The CCSS Requires Three Shifts in Mathematics

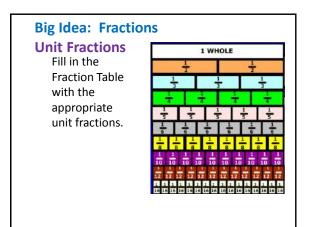

- **1. Focus:** Focus strongly where the standards focus.
- 2. Coherence: Think across grades, and link to major topics
- **3. Rigor:** In major topics, pursue *conceptual* **understanding**, procedural skill and *fluency*, and *application*

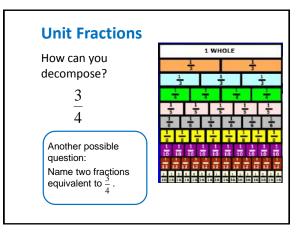
Domains K – 5

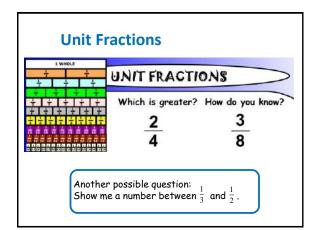

Domain	K	1	2	3	4	5
Counting and Cardinality (CC)	\checkmark					
Operations and Algebraic Thinking (OA)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Number and Operations in Base Ten (NBT)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Measurement and Data (MD)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Geometry (G)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Numbers and Operations- Fractions (NF)				\checkmark	\checkmark	\checkmark

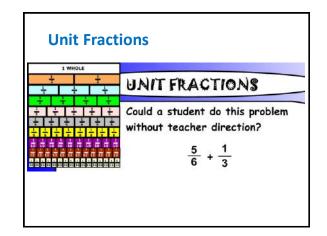


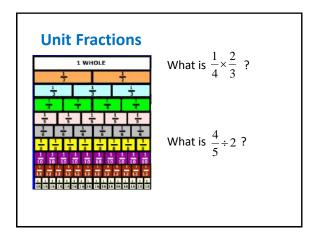


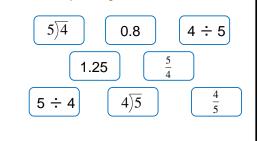

Big Idea: Multiplication & Division (NBT)

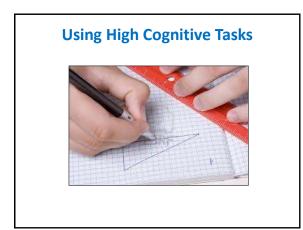



As a table group, show as many strategies as you can to find $1025 \div 4$. How do you know your strategies makes sense?









Interpreting Division Notation

If I share 5 pizzas among 4 people, how much pizza will each person get? Circle all answers.

Instructional Tasks Matter!

"Not all tasks are created equal, and different tasks will provoke different levels and kinds of student thinking."

Stein, Smith, Henningsen, & Silver, 2000

"The level and kind of thinking in which students engage determines what they will learn."

Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, Oliver, & Human, 1997

Lower Level Demand Tasks

- Algorithmic.
- Require limited cognitive demand for successful completion. Little ambiguity in problem.
- No connection to concepts/procedures being taught.
- Focused on producing a correct answer instead of developing mathematical understanding.
- Reproduces previously learned facts, rules, formulas, or definitions or requires memorization.

--Smith, M. & Stein, M, 5 Practices for Orchestrating Productive Mathematics Discussions, 2011 (p. 16)

Higher Level Demand Tasks

- Focus on using procedures that develop conceptual understanding.
- Often represented in multiple ways.
- Require some cognitive effort. General procedures used cannot be followed mindlessly.
- Require complex and non-algorithmic thinking.
- Require students to explore and understand the nature of math concepts.

--Smith, M. & Stein, M, 5 Practices for Orchestrating Productive Mathematics Discussions, 2011 (p. 16)

Five Practices when Implementing High Cognitive Tasks

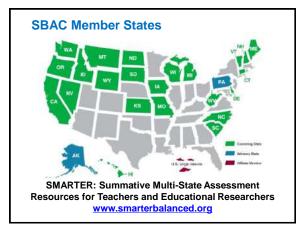
- Anticipating likely student responses to challenging mathematical tasks.
- Monitoring students' actual responses to the tasks (while students work on the task in pairs or small groups).
- Selecting particular students to present their mathematical work during the whole-class discussion.
- Sequencing the student responses that will be displayed in a specific order.
- Connecting different students' responses and connecting the responses to key mathematical ideas.

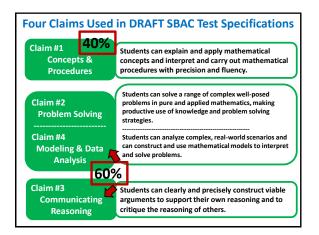
--Smith, M. & Stein, M, 5 Practices for Orchestrating Productive Mathematics Discussions, 2011 (p. 8)

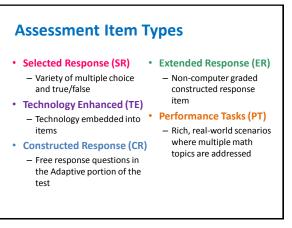
Where can I find tasks?

- www.illustrativemathematics.org
- www.k-5mathteachingresources.com
- www.insidemathematics.org
- www.ccssmath.org
- www.commoncoreconversation.com
- www.smarterbalanced.org
- https://grade2commoncoremath.wikispaces.h cpss.org/Grade+2+Home

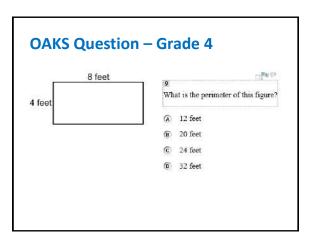
Putting it All Together


- Design a lesson using the Lesson Planning Tool that you will teach next week.
 - How will you emphasize a mathematical practice?
 - What are your assessing and advancing questions?
 - How will the lesson begin and end?
 - What are students doing during the lesson?
- Find/Create a high cognitive task to use in the next week with students.
 - How will you also teach a mathematical practice?




How will we know students have learned the CCSSM?

Formative vs. Summative Assessments Formative Summative A process during learning An event after learning Descriptive feedback, use Chapter tests, state of rubrics, student selfassessment, end-of-year assessment placement tests Used to support ongoing • Used to measure growth, improvement achievement



Cognitive Rigor and Depth of Knowledge (DOK)

Level 1: Recall and Reproduction Requires eliciting information such as a fact, definition, term, or a simple procedure, as well as performing a simple algorithm or applying a formula.

- Level 2: Basic Skills and Concepts
 Requires the engagement of some mental processing beyond
 a recall of information.
- Level 3: Strategic Thinking and Reasoning Requires reasoning, planning, using evidence, and explanations of thinking.
- Level 4: Extended Thinking Requires complex reasoning, planning, developing, and thinking most likely over an extended period of time.

SBAC – Grade 4

43023

A rectangle is 6 feet long and has a perimeter of $20\frac{1}{3}$ feet.

What is width of this rectangle? Explain how you solved this problem.

How do you create higher level DOK tasks?

Ask students to:

- Write a word problem for a given expression.
- Write a word problem with a given answer or range of answers.
- Solve a problem using more than one strategy.
- Find the error in a student solution and correct.
- Make sense of a provided solution strategy by writing the original problem or justifying the work shown.
- Solve multi-step problems.
- Solve open-ended tasks with multiple possible responses.

Does the Assessment Evaluate Student Understanding of Learning Targets?

- Are learning targets clear?
- Do proficient scores indicate student learning?
- Do low scores indicate that students need intervention?

Is There a Proportional Value Between Scores and Learning Targets on the Assessment?

- Is one learning target weighted more than others?
- Is one assessment method weighted more than another?
- If yes, is that acceptable?

What Is Proficiency?

- Rubric: Passing in all categories?
- Scoring criteria overall score or each section?

PLC team determines.
Look at student work.

Analyze Assessments

- Which standards or learning targets are assessed?
- How are the mathematical practices assessed?
- Use the Evaluation of Assessment Tool to determine balance of DOK Levels, variety of assessment types, quality of questions and final product.
- How will the items be scored?
- What is proficiency?

Analyze an Assessment Look at the assessment. How does it measure against the rubric? How can it be improved? What needs to be modified on your math assessments?

Time to create/analyze our tests... Choose a current or next unit test Analyze or create it using the Evaluation of Assessment Tool Discuss any changes that are needed...Continue... Continue with the next test... How are thematical Practices What are the Learning Targets? What is the DOK level dresse for each problem? How will we What is proficiency? score each item?

Analyze Student Work

- Read the task: Cindy's Cats
- What content standards and/or mathematical practices are being assessed in this task?
- What can you learn from student work?
- What can students learn from one another's work?
- How can all students be re-engaged in the learning of this content?

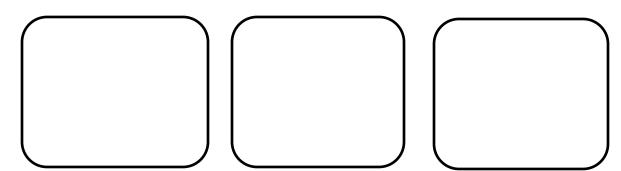
Next Steps...

- How can you make sure students are learning multiple strategies for conceptual understanding?
- How can you include the standards for mathematical practice in lessons?
- How can you use high cognitive tasks in class?
- What do you need to consider in lesson design?
- What do you need to consider in assessments?

Contact Information

Sarah Schuhl , SMc Curriculum sarahschuhl@yahoo.com

Shannon McCaw, SMc Curriculum mccaws@smccurriculum.com 800-708-5259

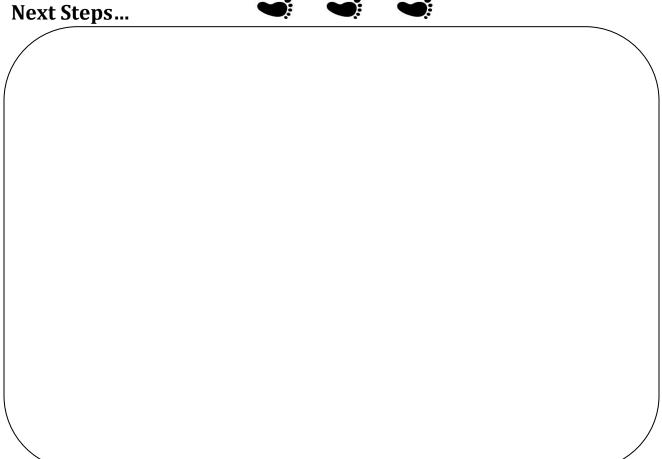


Temperature Check

1. Which mathematical practices have you been teaching students this year?

2. Which content standards have you taught this year?

3. What are three "big ideas" you want students to come to you knowing next year?


4. How are you feeling about implementing the Common Core State Standards in Mathematics?

Track Your Progress: Common Core State Standards for Mathematics in Action

Shade each rectangle to show your current understanding of each learning target.

 I can describe strategies for teaching the priority content standards with the mathematical practices. 	Starting	Getting There	Got It!
 I can create assessments aligned to SBAC claims and DOK levels. 	Starting	Getting There	Got It!
 I can analyze student work to increase student achievement. 	Starting	Getting There	Got It!

Grade 3	Grade 4	Grade 5
Operations and Algebraic Thinking	Operations and Algebraic Thinking	<u>Number and Operations in Base Ten</u>
Represent and solve problems involving	Use the four operations with whole	Understand the place value system.
multiplication and division.	numbers to solve problems.	
		Perform operations with multi-digit
Understand properties of multiplication	<u>Number and Operations in Base Ten</u>	whole numbers and with decimals to
and the relationship between	Generalize place value understanding	hundredths.
multiplication and division.	for multi-digit whole numbers.	
		<u>Number and Operations -Fractions</u>
Multiply and divide within 100.	Use place value understanding and	Use equivalent fractions as a strategy to
	properties of operations to perform	add and subtract fractions.
Solve problems involving the four	multi-digit arithmetic.	
operations, and identify and explain		Apply and extend previous
patterns in arithmetic.	<u>Number and Operations- Fractions</u>	understandings of multiplication and
	Extend understanding of fraction	division to multiply and divide
<u>Number and Operations - Fractions</u>	equivalence and ordering.	fractions.
Develop understanding of fractions as		
numbers.	Build fractions from unit fractions by	<u>Measurement and Data</u>
	applying and extending previous	Geometric measurement: understand
<u>Measurement and Data</u>	understandings of operations on whole	concepts of volume and relate volume to
Solve problems involving measurement	numbers.	multiplication and to addition.
and estimation of intervals of time,		
liquid volumes and	Understand decimal notation for	
masses of objects.	fractions, and compare decimal	
	fractions.	
Geometric measurement: understand		
concepts of area and relate area to		
multiplication and to addition.		

CCSSM (SBAC) <u>Priority</u> Clusters 3 - 5

Grade 3	Grade 4	Grade 5
Number and Operations in Base Ten	Operations and Algebraic Thinking	Operations and Algebraic Thinking
Use place value understanding and	Gain familiarity with factors and	Write and interpret numerical
properties of operations to perform	multiples.	expressions.
multi-digit arithmetic.		
	Generate and analyze patterns.	Analyze patterns and relationships.
<u>Measurement and Data</u>		
Represent and interpret data.	<u>Measurement and Data</u>	<u>Measurement and Data</u>
	Solve problems involving measurement	Convert like measurement units within a
Geometric measurement: recognize	and conversion of measurements from a	given measurement system.
perimeter as an attribute of plane	larger unit to a smaller unit.	
figures and distinguish between linear		Represent and interpret data.
and area measures.	Represent and interpret data.	
		Geometry
<u>Geometry</u>	Geometric measurement: understand	Graph points on the coordinate plane to
Reason with shapes and their attributes.	concepts of angle and measure angles.	solve real-world and mathematical
		problems.
	Geometry	
	Draw and identify lines and angles, and	Classify two-dimensional figures into
	classify shapes by properties of their	categories based on their properties.
	lines and angles.	

CCSSM (SBAC) <u>Supporting</u> Clusters 3 - 5

Essential Skills – CCSSM Content Standards

Review the Priority and Supporting Clusters. Read the accompanying content standards.

My Grade Level: _____

1. What are 7 – 10 Essential Skills students in my grade must learn?

2. What are 7 – 10 Essential Skills students should come to my grade having learned?

Mathematical Practices 3 – 5

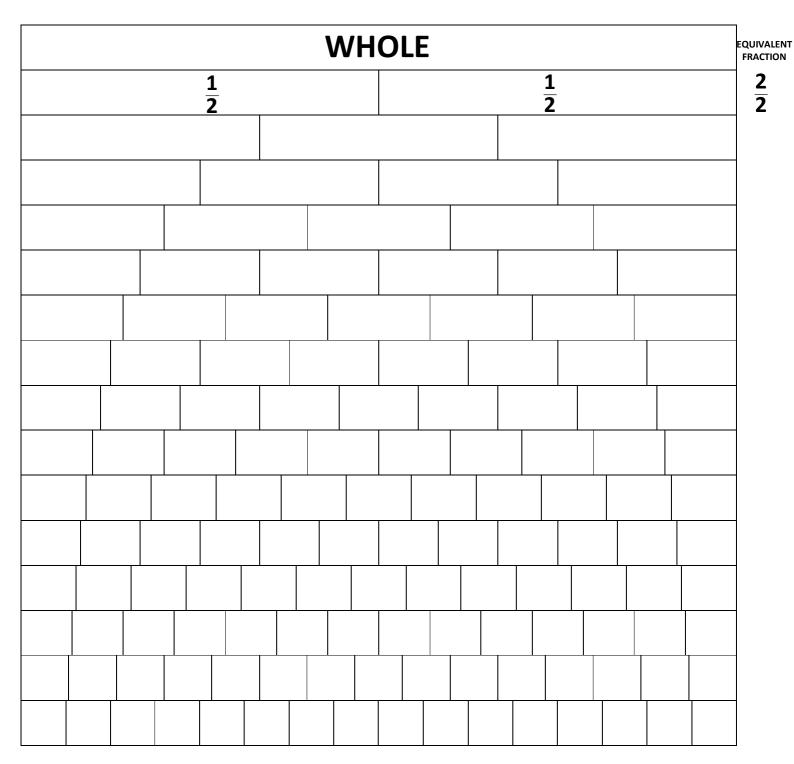
- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

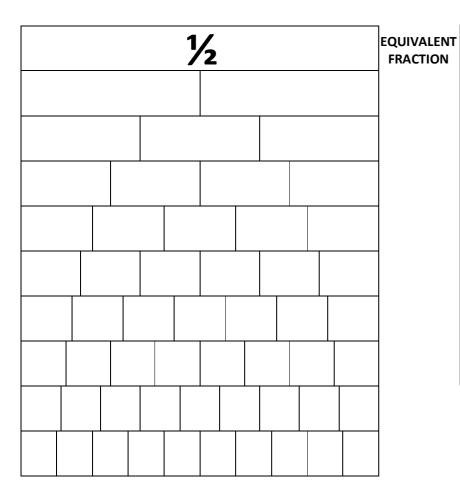
Write the number for the mathematical practice best evidenced by each student description.

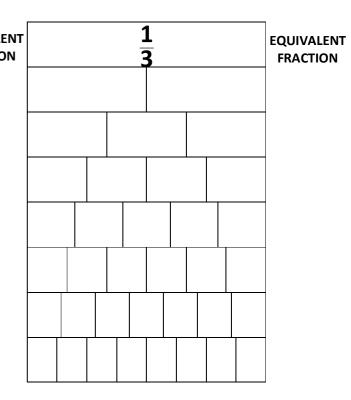
	Student Description	MP
	A student is trying to understand what $\frac{3}{8}$ means. When thinking about its relationship	
А	to $\frac{1}{2}$, the student thinks about $\frac{3}{8}$ as $\frac{1}{8} + \frac{1}{8} + \frac{1}{8}$ and that four $\frac{1}{8}$'s is half, so three of them is	
	less than $\frac{1}{2}$.	
В	Two students are solving a multi-step word problem. Each student approaches the problem differently. After working together they determine a plan to solve the problem.	
С	One student says to find 12×3 , you can find $12 + 12 + 12$. Another explains how to find the product using $(10 \times 3) + (2 \times 3)$. A third student says to double 6×3 . The three students discuss which strategy is most efficient.	
D	A student writes an equation to represent a word problem and shows how to use it to solve the problem.	
Е	A student uses his knowledge of decimal operations to figure out the total bill at a restaurant.	
F	A student chooses to use a ruler to measure the length of the sides of a rectangle.	
G	A student gets an answer of $3\frac{1}{2}$ cars needed and, realizing this is not realistic, changes his answer to 4 cars needed.	
Н	When looking at a geometric pattern, a student notices each figure has 2 more squares than the previous figure.	

Problem Solving Graphic Organizer

Words	<u>Open Number Line</u>
Kyle has 12 boxes. There are 6 books in each box.	
Kyle has room on his shelf for 70 books.	
Will all of the books in the boxes fit on Kyle's shelf?	
<u>Area Model</u>	<u>Equation</u>
Answer	


Multiplication & Division: 3 – 5


1. show as many strategies as you can to find $1025 \div 4$.


2. Use a strategy that is not the standard algorithm to find $678 \div 3$.

2. Use two different strategies to find 12×35 .

Fraction Tables

-	<u>1</u> 4	EQUIVALENT FRACTION	1 5	EQUIVALENT FRACTION
		_		_

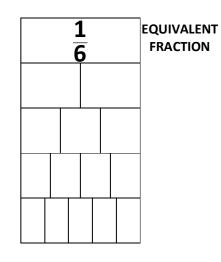


TABLE 1. Common addition and subtraction situations.⁶

	Result Unknown	Change Unknown	Start Unknown
Add to	Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now? 2 + 3 = ?	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? 2 + ? = 5	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the grass before? ? + 3 = 5
Take from	Five apples were on the table. I ate two apples. How many apples are on the table now? 5 - 2 = ?	Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? 5 - ? = 3	Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before? ? - 2 = 3
	Total Unknown	Addend Unknown	Both Addends Unknown ¹
Put Together/ Take Apart²	Three red apples and two green apples are on the table. How many apples are on the table? 3 + 2 = ?	Five apples are on the table. Three are red and the rest are green. How many apples are green? 3 + ? = 5, 5 - 3 = ?	Grandma has five flowers. How many can she put in her red vase and how many in her blue vase? 5 = 0 + 5, 5 = 5 + 0
	5 - 2 - :	5	5 = 0 + 3, 5 = 3 + 0
			5 = 2 + 3, 5 = 3 + 2
	Difference Unknown	Bigger Unknown	Smaller Unknown
	("How many more?" version): Lucy has two apples. Julie has five apples. How many more apples does Julie have than Lucy?	(Version with "more"): Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have?	(Version with "more"): Julie has three more apples than Lucy. Julie has five apples. How many apples does Lucy have?
Compare ³	("How many fewer?" version): Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have than Julie? 2 + ? = 5, 5 - 2 = ?	(Version with "fewer"): Lucy has 3 fewer apples than Julie. Lucy has two apples. How many apples does Julie have? 2 + 3 = ?, 3 + 2 = ?	(Version with "fewer"): Lucy has 3 fewer apples than Julie. Julie has five apples. How many apples does Lucy have? 5 - 3 = ?, ? + 3 = 5

¹These take apart situations can be used to show all the decompositions of a given number. The associated equations, which have the total on the left of the equal sign, help children understand that the = sign does not always mean makes or results in but always does mean is the same number as.

²Either addend can be unknown, so there are three variations of these problem situations. Both Addends Unknown is a productive extension of this basic situation, especially for small numbers less than or equal to 10.

³For the Bigger Unknown or Smaller Unknown situations, one version directs the correct operation (the version using more for the bigger unknown and using less for the smaller unknown). The other versions are more difficult.

⁶Adapted from Box 2-4 of Mathematics Learning in Early Childhood, National Research Council (2009, pp. 32, 33).

TABLE 2. Common multiplic	ation and division situations. ⁷
---------------------------	---

	Unknown Product	Group Size Unknown ("How many in each group?" Division)	Number of Groups Unknown ("How many groups?" Division)
	3 × 6 <i>=</i> ?	3 × ? = 18, and 18 ÷ 3 = ?	? × 6 = 18, and 18 ÷ 6 <i>=</i> ?
Equal	There are 3 bags with 6 plums in each bag. How many plums are there in all? <i>Measurement example</i> . You	If 18 plums are shared equally into 3 bags, then how many plums will be in each bag? <i>Measurement example</i> . You	If 18 plums are to be packed 6 to a bag, then how many bags are needed? <i>Measurement example</i> . You
Groups	need 3 lengths of string, each 6 inches long. How much string will you need altogether?	have 18 inches of string, which you will cut into 3 equal pieces. How long will each piece of string be?	have 18 inches of string, which you will cut into pieces that are 6 inches long. How many pieces of string will you have?
Arrays,4	There are 3 rows of apples with 6 apples in each row. How many apples are there?	If 18 apples are arranged into 3 equal rows, how many apples will be in each row?	If 18 apples are arranged into equal rows of 6 apples, how many rows will there be?
Area⁵	<i>Area example</i> . What is the area of a 3 cm by 6 cm rectangle?	Area example. A rectangle has area 18 square centimeters. If one side is 3 cm long, how long is a side next to it?	Area example. A rectangle has area 18 square centimeters. If one side is 6 cm long, how long is a side next to it?
	A blue hat costs \$6. A red hat costs 3 times as much as the blue hat. How much does the red hat cost?	A red hat costs \$18 and that is 3 times as much as a blue hat costs. How much does a blue hat cost?	A red hat costs \$18 and a blue hat costs \$6. How many times as much does the red hat cost as the blue hat?
Compare	<i>Measurement example</i> . A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?	Measurement example. A rubber band is stretched to be 18 cm long and that is 3 times as long as it was at first. How long was the rubber band at first?	Measurement example. A rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first?
General	a × b = ?	a × ? = p, and p ÷ a = ?	? × b = p, and p ÷ b = ?

⁴The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and columns: The apples in the grocery window are in 3 rows and 6 columns. How many apples are in there? Both forms are valuable.

⁵Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps, so array problems include these especially important measurement situations.

⁷The first examples in each cell are examples of discrete things. These are easier for students and should be given before the measurement examples.

Grade 3 3.NBT.3 – Colored Pencils

There are 6 tables in Mrs. Potter's art classroom. There are 4 students sitting at each table. Each student has a box of 10 colored pencils.

- (A) How many colored pencils are at each table? Use words, numbers and/or pictures to explain your answer.
- (B) Mr. Potter says there are 200 colored pencils all together in his art classroom. Is he correct? Explain your reasoning.

---www.illustrativemathematics.org

Grade 5 5.OA.2 – Video Game

Eric is playing a video game. At a certain point in the game, he has 31500 points. Then the following events happen, in order:

- He earns 2450 additional points.
- He loses 3310 points.
- The game ends, and his score doubles.
- 1. Write an expression for the number of points Eric has at the end of the game. Do not evaluate the expression. The expression should keep track of what happens in each step listed above.
- 2. Eric's sister Leila plays the same game. When she is finished playing, her score is given by the expression

3(24500+3610)-6780.

Describe a sequence of events that might have led to Leila earning this score.

---www.illustrativemathematics.org

Figure 2.12: CCSS Mathematical Practices Lesson-Planning Tool

Unit:	Date:	Lesson:			
Learning ta	rget: As a result of t	oday's class, students w	ill be able to		
Formative assessment: How will students be expected to demonstrate mastery of the learning target during in-class checks for understanding?					
Probing Questions for Differentiation on Mathematical Tasks					
Assessing	Questions		Advancing Que	stions	
(Create questions to scaffold instruction for students who are "stuck" during the lesson or the lesson tasks.) (Create questions to further learning for are ready to advance beyond the learn			-		
Which Mathematical Practice will be targeted for proficiency development during this lesson?					
Tasks (Tasks can v	ary from lesson to	Doing? (How will the teac	What Will the Teacher Be Doing?What Will the Students Be Doing?(How will the teacher present and then monitor student response to(How will students be actively engaged in each part of the		
lesson.)	-	the task?)	•	lesson?)	
How does the connect to s	of-Class Routines ne warm-up activity students' prior or how is it based o omework?	n			

Tasks (Tasks can vary from lesson to lesson.)	What Will the Teacher Be Doing? (How will the teacher present and then monitor student response to the task?)	What Will the Students Be Doing? (How will students be actively engaged in each part of the lesson?)
Task 1 How will the students be engaged in understanding the learning target?		
Task 2 How will the task develop student sense making and reasoning?		
Task 3 How will the task require student conjectures and communication?		
Closure How will student questions and reflections be elicited in the summary of the lesson? How will students' understanding of the learning target be determined?		

Depth of Knowledge (DOK)

Source: <u>www.smarterbalanced.org</u> Mathematics Content Specifications

A "Snapshot" of the	Cognitive Rigor Mat	rix (Hess, Carlock, Jo	nes & Walkup, 2009)
Depth of Thinking (Webb) + Type of Thinking (Revised Bloom)	DOK Level 1 Recall & Reproduction	DOK Level 2 Basic Skills & Concepts	DOK Level 3 Strategic Thinking & Reasoning	DOK Level 4 Extended Thinking
Remember	 Recall conversations, terms, facts 			
Understand	 Evaluate an expression Locate points on a grid or number on number line Solve a one-step problem Represent math relationships in words, pictures, or symbols 	 Specify, explain relationships Make basic inferences or logical predictions from data/observations Use models/diagrams to explain concepts Make and explain estimates 	 Use concepts to solve non-routine problems Use supporting evidence to justify conjectures, generalize, or connect ideas Explain reasoning when more than one response is possible Explain phenomena in terms of concepts 	 Relate mathematical concepts to other content areas, other domains Develop generalizations of the results obtained and the strategies used and apply them to new problem situations
Apply	 Follow simple procedures Calculate, measure, apply a rule (e.g., rounding) Apply algorithm or formula Solve linear equations Make conversions 	 Select a procedure and perform it Solve routine problem applying multiple concepts or decision points Retrieve information to solve a problem Translate between representations 	 Design investigation for a specific purpose or research question Use reasoning, planning, and supporting evidence Translate between problem & symbolic notation when not a direct translation 	• Initiate, design, and conduct a project that specifies a problem, identifies solution paths, solves the problem, and reports results
Analyze	 Retrieve information from a table or graph to answer a question Identify a pattern/trend 	 Categorize data, figures Organize, order data Select appropriate graph and organize & display data Interpret data from a simple graph Extend a pattern 	 Compare information within or across data sets or texts Analyze and draw conclusions from data, citing evidence Generalize a pattern Interpret data from complex graph 	• Analyze multiple sources of evidence or data sets
Evaluate			 Cite evidence and develop a logical argument Compare/contrast solution methods Verify reasonableness 	• Apply understanding in a novel way, provide argument or justification for the new application
Create	Brainstorm ideas, concepts, problems, or perspectives related to a topic or concept	• Generate conjectures or hypotheses based on observations or prior knowledge and experience	 Develop an alternative solution Synthesize information within one data set 	 Synthesize information across multiple sources or data sets Design a model to inform and solve a practical or abstract situation.

Depth of Knowledge (DOK) Levels

Level One Activities	Level Two Activities	Level Three Activities	Level Four Activities
Recall elements and details of story structure, such as sequence of events, character, plot and setting.	Identify and summarize the major events in a narrative.	Support ideas with details and examples.	Conduct a project that requires specifying a problem, designing and conducting an experiment, analyzing
Conduct basic mathematical	Use context cues to identify the meaning of unfamiliar words.	Use voice appropriate to the purpose and audience.	its data, and reporting results/ solutions.
calculations. Label locations on a map.	Solve routine multiple-step problems. Describe the cause/effect of a	Identify research questions and design investigations for a scientific problem.	Apply mathematical model to illuminate a problem or situation.
Represent in words or diagrams a scientific concept or relationship.	particular event. Identify patterns in events or	Develop a scientific model for a complex situation.	Analyze and synthesize information from multiple sources.
Perform routine procedures like measuring length or using punctuation marks correctly.	behavior. Formulate a routine problem given data and conditions.	Determine the author's purpose and describe how it affects the interpretation of a reading	Describe and illustrate how common themes are found across texts from different cultures.
Describe the features of a place or people.	Organize, represent and interpret data.	selection. Apply a concept in other contexts.	Design a mathematical model to inform and solve a practical or abstract situation.

Webb, Norman L. and others. "Web Alignment Tool" 24 July 2005. Wisconsin Center of Educational Resear 25 niversity of Wisconsin-Madison. 2 Feb. 2006. < http://www.wcer.wisc.edu/WAT/index.aspx>.

Figure 4.4: Evaluation Tool for Assessment Instrument Quality

Assessment indicators	Description of Level 1	Requirements of the Indicator Are Not Present	Limited Requirements of This Indicator Are Present	Substantially Meets the Requirements of the Indicator	Fully Achieves the Requirements of the Indicator	Description of Level 4
Identification and emphasis on learning targets	Learning targets are unclear or absent from the assessment instrument. Too much attention is given to one target.	-	5	n	4	Clearly stated learning targets are on the assessment and connected to the assessment questions.
Visual presentation	Assessment is sloppy, disorganized, and difficult to read. There is no room for teacher feedback.	-	0	n	4	Assessment is neat, organized, easy to read, and well spaced. There is room for teacher feedback.
Time allotment	Few students can complete the assessment in the time allowed.	-	2	ß	4	Test can be successfully completed in time allowed.
Clarity of directions	Directions are missing or unclear.	-	2	n	4	Directions are appropriate and clear.
Clear and appropriate scoring rubrics	Scoring rubric is either not in evidence or not appropriate for the assessment task.	-	5	n	4	Scoring rubric is clearly stated and appropriate for each problem.
Variety of assessment task formats	Assessment contains only one type of questioning strategy and no multiple choice. Calculator usage is not clear.	-	5	n	4	Test includes a variety of question types, assesses different formats, and includes calculator usage.
Question phrasing (precision)	Wording is vague or misleading. Vocabulary and precision of language is problematic for student understanding.	-	2	n	4	Vocabulary is direct, fair, and clearly understood. Students are expected to attend to precision in responses.
Balance of procedural fluency and demonstration of understanding	Test is not balanced for rigor. Emphasis is on procedural knowledge. Minimal cognitive demand for demonstration of understanding is present.	-	N	თ	4	Test is balanced with product- and process-level questions. Higher-cognitive-demand and understanding tasks are present.

Common Core Mathematics in a PLC at Work[™], Leader's Guide © 2012 Solution Tree Press • solution-tree.com Visit go.solution-tree.com/commoncore to download this page.

What does a Common Core Assessment look like?

Depth of Knowledge Levels

Level 1: Recall and Reproduce (25% of seat time on assessment)

Level 2: Basic Skills and Concepts (50% of seat time on assessment)

Level 3: Strategic Thinking and Reasoning (25% of seat time on assessment)

Level 4: Extended Thinking (Separate assessment – performance task)

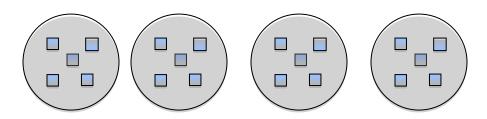
<u>Claims</u>

- 1. Concepts and Procedures (40% of overall score on SBAC)
- 2. Problem-Solving (40% of overall score on SBAC)
- 3. Communicating Reasoning (20% of overall score on SBAC)

Styles of Items

- **1. Selected Response**
 - multiple choice
 - select all that apply
 - true/false or yes/no
 - drag and drop
- 2. Constructed Response
 - fill in the blank
 - numerical answer
- 3. Extended Response
 - explain your reasoning
 - show how you know your answer is correct
 - writing a note to convince someone
- 4. Performance Task

Assessment Evaluation Tool


ltem Number	DOK Level	Claim	ltem Type

Grade 3 Unit 4: Multiplication and Division

Name____

3.OA.1 – **2** *I* can interpret multiplication and division equations.

1. Destiny found a math picture on the floor after math. Here it is.

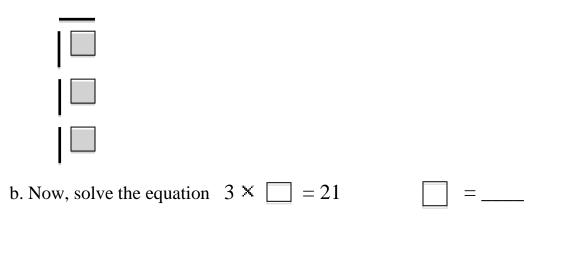
- a. What are different equations that this picture could represent? Circle all that apply. 2 points_____2
 - $4 \times 5 = 20$ $20 \div 4 = 5$ $5 \times 2 = 10$
 - $10 \div 5 = 2$ $5 \times 4 = 20$ $20 \div 2 = 10$
- b. Write a story problem that matches this picture.

2. Show how you can find the product of 5×6 on a hundreds chart.

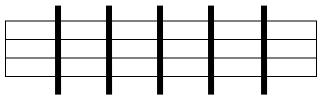
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Answer: $5 \times 6 =$ _____

1 point _____


2 points

Date


3. Brian's teacher gave him this math problem: $3 \times \square = 21$

2 points _____

a. Brian started solving the problem by sketching an array. Finish his work to show how he solved the problem.

4. The model below shows a division problem.

- a. Write a division equation that matches the picture. 2 points _____
- b. Write a story problem that matches your equation. 1 point _____

3.OA.3 *I* can solve word problems.

5. Kendra had 8 times as many pencils as Tracy. Kendra has 56 pencils. How many pencils does Tracy have? Use a picture, words, and/or an equation to show how you know your answer is correct.
2 points _____

6. Peggy has 6 pieces of string. Each piece has a length of 8 inches. Peggy placed all six pieces of string in a long line with the end of one string touching the end of another string. What was the total length of the line she created? Use a picture, words, and/or an equation to show how you know your answer is correct.
2 points _____

7. Martin had 4 goldfish bowls. This is what he did with the fish. He put: 10 fish in the 1st bowl

10 fish in the 2^{nd} bowl 7 fish in the 3^{rd} bowl and 13 fish in the 4^{th} bowl

Martin says that he showed 4×10 using the bowls and the goldfish. Is he correct? Explain why or why not. 2 points

3.OA.4 *I* can determine the unknown in an equation.

1 point each _____

13. $24 \div \Box = 8$ $\Box = _$

32

Scoring

3.OA.1-2 I can interpret multiplicat	tion and division equations.
Test Question #1a: 2 poin	ts if all three correct equations are circled
	1 point 1 or 2 correct equations are circled
#1b:	1 point for a correct word problem
Test Question #2: 1 poin	t for correct model
	1 point for correct answer
Test Question #3: 1 poin	t for correct model in part a
	1 point for correct answer in part b
Test Question #4a:	2 points for correct equation
	1 point if dividend and divisor correct but wrong quotient
#4b:	1 point for a correct word problem
*Proficiency: 7 out of 10 points	

*Proficiency: 7 out of 10 points

3.OA.3 I can solve word problems.

Test Question #5	: 1 point the picture or equation
	1 point for correct answer
Test Question #6	: 1 point the picture or equation
	1 point for correct answer
Test Question #7:	1 point for answering "No"
	1 point for correct explanation
• • • • • • •	

*Proficiency: 4 out of 6 points

3.OA.4 I can determine the unknown in an equation. Test Questions #8 – 13 1 point each
*Proficiency: 4 out of 6 points

Student Reflection

Learning Target	Test Questions	Score	H	ow did I do? (Circle one.)
2.NBT.2 I can interpret multiplication and division equations.	#1 – 4	out of 10	I got it!	Still learning it
3.OA.3 I can solve word problems.	#5 – 7	out of 6	I got it!	Still learning it
3.OA.4 I can determine the unknown in an equation.	#8 – 13	out of 6	I got it!	Still learning it

Learning Targets I know and can do:

Learning Targets I still need to learn:

Cindy's Cats

This problem gives you the chance to:

• solve fraction problems in a practical context

Cindy has 3 cats: Sammy, Tommy and Suzi.

1. Cindy feeds them on Cat Crunchies.

Each day Sammy eats $\frac{1}{2}$ of the box, Tommy eats $\frac{1}{8}$ of the box and Suzi eats $\frac{1}{4}$ of the box.

What fraction of a whole box do the cats eat, in all, each day? Show how you figured this out.

2. Tommy and Suzi spend much of each day sleeping. Tommy sleeps for $\frac{3}{5}$ of the day and Suzi sleeps for $\frac{7}{10}$ of the day. Which of the two cats sleeps for longer?

How much longer does it sleep each day? Show how you figured this out. 3. Cindy's cats often share a carton of cat milk.

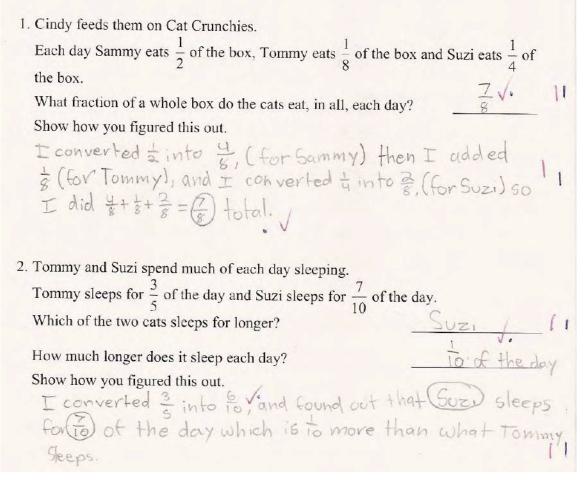
Sammy always drinks $\frac{1}{3}$ of the carton, Tommy always drinks $\frac{5}{12}$ of the carton, and Suzi always drinks $\frac{1}{6}$ of the carton.

What fraction of the carton of cat milk is left over? Show how you figured it out.

4. Cindy's cats love to jump in and out of their cat door.

Yesterday the cat door was used 100 times by her cats.

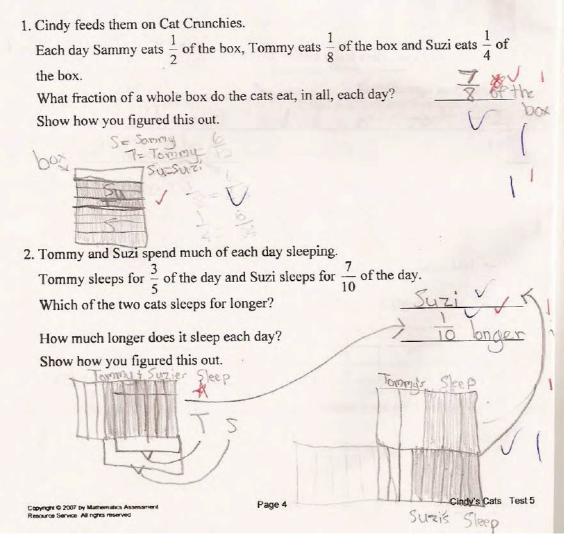
Sammy used it for $\frac{1}{4}$ of the times and Tommy used it for $\frac{3}{10}$ of the times.


How many times did Suzi use the cat door? Explain how you figured it out.

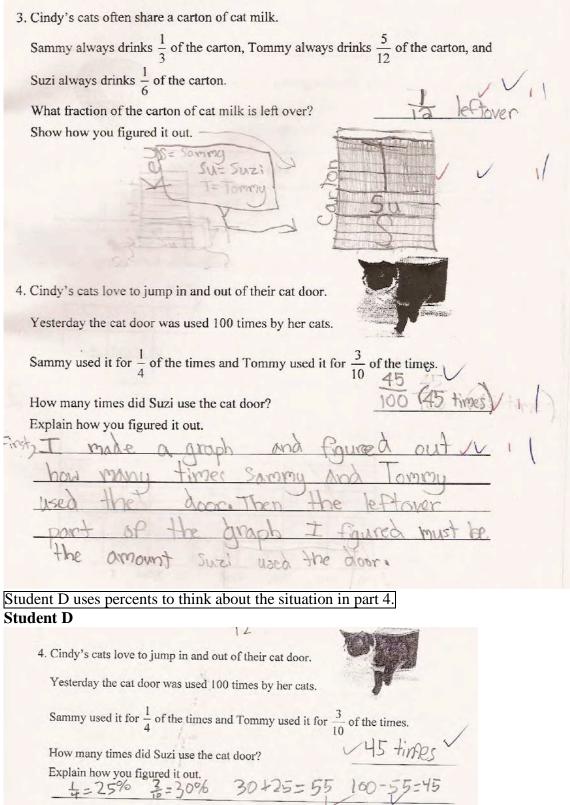
Looking at Student Work on Cindy's Cats

An important part of solving word problems is understanding what you know and what is the result of each calculation. Student A makes use of clear labels to define the numbers in the problem and show why the calculations make sense. The student uses common denominators throughout. Student A is able to think about multiplication to find 1/4 of 100 and 3/10 of 100.

Student A



Student A, part 2


3. Cindy's cats often share a carton of cat milk. Sammy always drinks $\frac{1}{3}$ of the carton, Tommy always drinks $\frac{5}{12}$ of the carton, and Suzi always drinks $\frac{1}{6}$ of the carton. 1 /. 11 What fraction of the carton of cat milk is left over? Show how you figured it out. I converted z into 12 (for Sammy), plus 52, (for Tommy) and I also converted t into 12, (for Suzi) then I added 1/2+5+2=(1), then I did 1/2-1/2 (2) leftover. 11 4. Cindy's cats love to jump in and out of their cat door. Yesterday the cat door was used 100 times by her cats. Sammy used it for $\frac{1}{4}$ of the times and Tommy used it for $\frac{3}{10}$ of the times. 11 45 How many times did Suzi use the cat door? Explain how you figured it out. to of 100 is 25 (for Sammy), to of 100 is 30, (for Tommy ren Iadded 2St 30=55, then I did

Student C is able to use diagrams to make sense of the size of the fractions and show the action or operation of the problems. In part 2, Student C shows the comparison in two different ways. *Can you describe the mathematics in each diagram?*

Student C

Student C, part 2

5th grade – 2007 Copyright © 2007 by Noyce Foundation Resource Service. All rights reserved. In part 4, students had a difficult time interpreting their answers. Student E has done all the correct calculations, but can't break down the meaning of the final answer from the number 45/100 to the meaning 45 times out of 100. *What kind of question could you pose to the class to get everyone thinking about what the 45/100 represents?*

Student E
Yesterday the cat door was used 100 times by her cats.
Sammy used it for $\frac{1}{4}$ of the times and Tommy used it for $\frac{3}{10}$ of the times.
How many times did Suzi use the cat door?
Explain how you figured it out
At first 1 changed the denominators and numerators on i and 3 so the were 100 and 100. added them up and got 100.
Vr. Then I subtracted 55 from 100, and my answer was
$\frac{1}{4} = \frac{25}{100} \frac{3}{10} = \frac{30}{100} \qquad \frac{25}{100} \qquad 0100 \qquad \frac{55}{100} \qquad \frac{-55}{100} \qquad (7)$
100 55 100 8

Implications for Instruction

Students need practice working with fractions in context. They should have a variety of strategies for combining fractions: models, common denominators, changing fractions to decimals or percents. Students should also be able to compare fractions to find out which is larger and subtract fractions from 1 whole.

Some students are still having difficulty choosing operations. Work with bar models might help them to clarify the action of the story problems.

Ideas for Action Research

Looking at student work:

Often when planning remediation or helping students who are behind, teachers think about the students who are almost there. What are the few steps they need to be successful? But what is it that the students who are at the lowest end of the spectrum need? How are their issues different?

Sit down with colleagues and examine the following pieces of student work. Consider the following questions:

- 1. What are the strengths, if any, that the student has? What does the student understand about the meaning of fractions? What does the student know about procedures with fractions? What are the concepts the students understand about the situation? How might these strengths be used to help build their understanding of the whole situation?
- 2. Is the student making appropriate choices of operations? Do you think the student could pick the correct operation if given a similar problem with whole numbers? What is your evidence? How do students learn to identify the action of the story?
- 3. How did students use representations? Were the representations accurate? Why or why not? What would have helped the student to improve their representation? Could their representation be modified in some way to solve the problem?
- 4. What is the role of labels in understanding what is known and what needs to be found? How does using labels help students to understand what they have calculated and interpret the meaning of the calculation? (This seems especially critical in part 4)
- 5. What misunderstandings does the student have? What skills is the student missing? What does this suggest about a specific course of action to help this student?
- 6. How are the needs of each of these students the same or different?

After your have carefully looked at each piece of student work, see if you can devise a plan of experiences/ discussions/ tools that might help these students to make more sense of these situations. While you don't have these exact students in your class, each member of the group will probably have students with similar misunderstandings. Identify students who you think are low and plan different approaches for attacking the problems outlined here. Have each person in the group try out a different course of action and report back on the how the lesson or series of lessons effected the targeted students. See if you can all use some similar starting problems and bring work of the students to share. What types of activities or experiences made the most noticeable improvement in student work?

Arnold

1. Cindy feeds them on Cat Crunchies.
Each day Sammy cast
$$\frac{1}{2}$$
 of the box, Tommy cass $\frac{1}{8}$ of the box and Suzi casts $\frac{1}{4}$ of the box.
What fraction of a whole box do the cats cat, in all, each day?
Show how you figured this out.

$$\frac{1}{2}\sqrt{\frac{3}{8}} = \frac{3}{16}$$

$$\frac{1}{9}\sqrt{\frac{3}{4}} = \frac{3}{16}$$

H

69