Name:	Date:	
Geometry Unit 3 Day 7:	Coordinate Proofs	

Triangle Vocabulary

equilateral	An equilateral triangle is a triangle with sides being .			
	<u> </u>			
isosceles	An isosceles triangle has at least			
	congruent sides.			
right	A right triangle has one angle with a			
	measure of The sides of a right			
	triangle have special names: the side			
	opposite the right angle is called			
	the, the other two are			
	called the			
isosceles right	An isosceles right triangle has 2			
	sides and angle whose			
	measure is 90°.			
scalene	A scalene triangle is a triangle with all			
	three sides that are			
	·			
altitude	An altitude of a triangle is a line			
	segment drawn from a vertex of a			
	triangle to the			
	opposite side.			
median	A median is a segment drawn from a			
	vertex of a triangle to the			
	of the opposite side.			

Using the definitions, $\underline{\text{write out plans}}$, $\underline{\text{including formulas}}$ you would use to prove each triangle definition.

Equilatoral triangle	lacacalac triongla	Dialet triangle
Equilateral triangle	Isosceles triangle	Right triangle
Scalene triangle	Altitude	Median

How do you write a coordinate geometry proof?

Coordinate geometry proofs employ the use of formulas such as the Distance Formula, the Slope Formula and/or the Midpoint Formula as well as postulates, theorems and definitions.

Distance Formula Slope Formula Midpoint Formula

When developing a coordinate geometry proof:

- 1. Draw and label the graph
- 2. State the formulas you will be using
- 3. Show and label ALL calculations
- 4. Have a concluding sentence stating what you have proven and why it is true.

Now let's write a coordinate geometry proof

What type of triangle is ΔJAY ? Given: J(0,6) A(4,2) Y(-3,-2)

Formula(s) used:

<u>Calculations/Reasons:</u>

Conclusion:

Triangle proof #1:

Given: The points P(2,1) E(3,4) A(4,1) form a triangle.

Prove: ΔPEA is an isosceles triangle.

Formula(s):

Calculations/Evidence:

Conclusion:			

Triangle proof #2:

If the points N(-5, 1) U(-1, 4) T(-1, 1) form a triangle, then prove ΔNUT is a right triangle.

F	o	r	m	u	la	(S)):

Calculations/Evidence:

