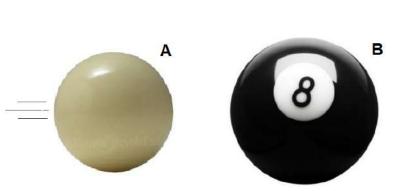
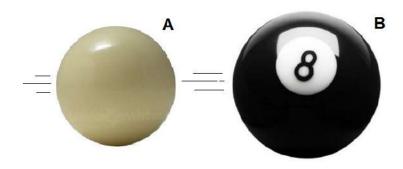
PHYSICS

Chapter 5: Momentum


Section 5C: Conservation of Momentum (Elastic Collisions)


Bell Ringer

A 40 kg miniature horse runs west at 8m/s. What is the force of impact if it hits a wall and comes to a stop in .5s?

Elastic Collisions

Objects move separately after collision KE is conserved p is conserved

Conservation of Momentum

- Principle that states that the total momentum of an isolated system stays constant.
 - Total momentum before a collision equals total momentum after a collision

AFTER

p = 30 kg·m/s p = 20 kg·m/sTotal = 50 kg·m/s

p = 20 kg·m/s p = 30 kg·m/s

Total = 50 kg·m/s

Conservation of Momentum Equation

 $p_{o(total)} = p_{(total)}$

Unit: $\frac{kg \cdot m}{2}$

* Remember that velocities are vectors

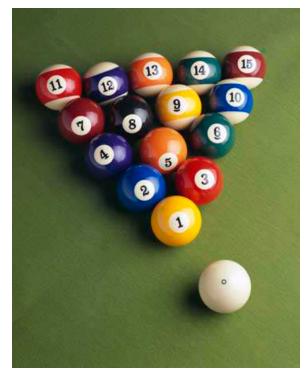
p_{o (total)} → sum of initial momenta of all objects
 p_(total) → sum of final momenta of all objects

Conservation of Momentum in Space

Demo: Newton's Cradle

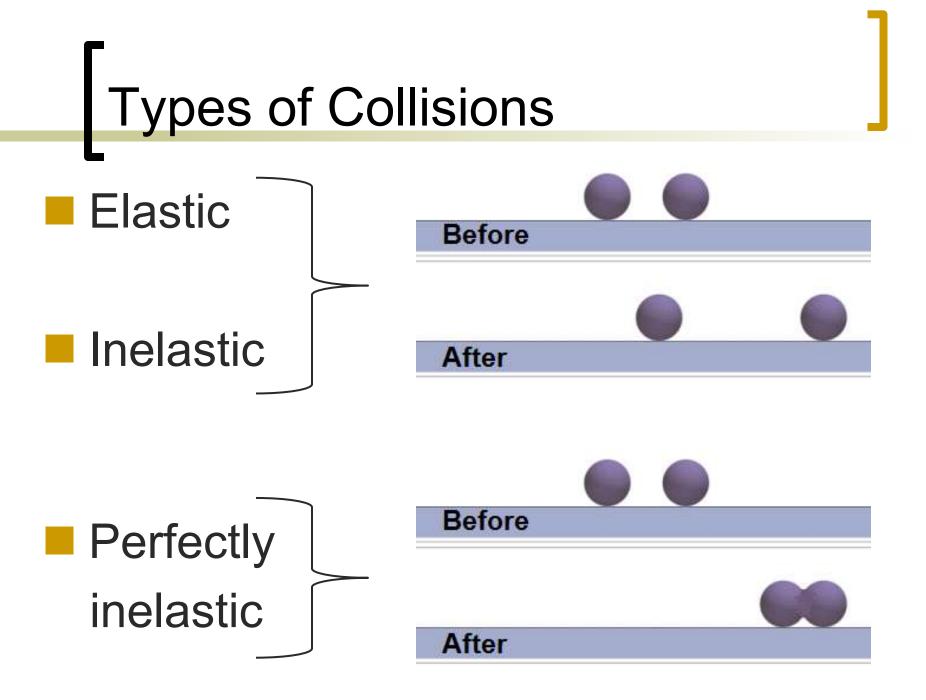
Newton's Cradle

Why science teachers are not asked to monitor recess.


Demo: Basketball and Tennis Ball

Conservation of Momentum in Two Dimensions

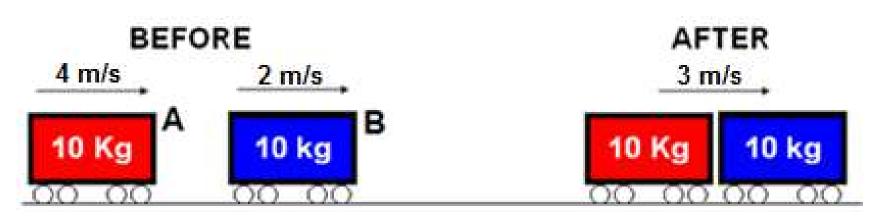
Conservation of Momentum in Two Dimensions



In-Class Problem #1

After a hold up, Robin Banks flees in his 1575 kg getaway car at 20 m/s. He crashes into a 45 kg highway barrel which is at rest. If Robin Bank's car moves at 18.9 m/s after the collision, how fast does the barrel move after being hit?

v = 38.9 m/s



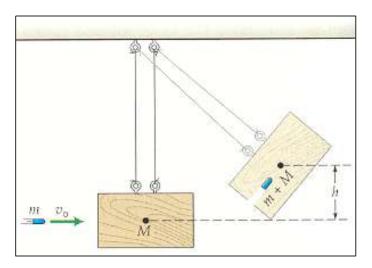
Types of Collisions

Туре	Kinetic Energy Conserved	Momentum Conserved	Stick Together
Elastic	\checkmark	\checkmark	
Inelastic	Some KE converts to thermal energy	\checkmark	
Perfectly Inelastic		\checkmark	\checkmark

Conservation of Momentum

Principle that states the total momentum of an isolated system stays constant

 $p = 40 \text{ kg} \cdot \text{m/s}$ $p = 20 \text{ kg} \cdot \text{m/s}$


Total = 60 kg·m/s

Total = 60 kg·m/s

Examples of Perfectly Inelastic Collisions

Conservation of Momentum Equation

 $p_{o(total)} = p_{(total)}$

Unit: $\frac{kg \cdot m}{2}$

* Remember that velocities are vectors

p_{o (total)} → sum of initial momenta of all objects
 p_(total) → sum of final momenta of all objects

In-Class Problem #1

A 1950 kg police car going 12.5 m/s rear-ends a 1500 kg sedan moving at 3.0 m/s. After the collision the two cars move together as one unit. What is their final velocity?

v = 8.37 m/s

In-Class Problem #2

A 79.5 kg defensive end tackles a 60 kg running back going north at 5 m/s. After the hit both players move together at 2.5 m/s south. How fast was the defensive end running before the tackle?

v = 8.16 m/s south

