Biology 10

Ch 3, 4, 5 Notes (Communities and Population Ecology)

What is Ecology?

- <u>ecology</u>: the study of the

 1)
 2)
- biotic factors: the _____ components of an environment
- abiotic factors: the ______components of an environment
 - ex: air quality, water quality, temperature, pH, soil type, etc

Levels of Organization Beyond the Organism

•	a group of organisms of the	living in
the same place	ce at the same time	

- <u>community</u>: groups of organisms from ______ living in the same place at the same time
- biome: a ______ with similar ______ and typical ______
- biosphere: _____, with all organisms and physical environments

Organisms Role in Energy Transfer

• producer: _____

■ i.e.- autotroph (either chemoautotroph, or photoautotroph)

		-		
•	consumer- organism that _		 	for food

- primary consumer- organism that eats _____ ("1st consumer")
- secondary consumers- organism that eats ______ (predators, carnivores)
- ominvores- eat plants or animals, thus, may be primary or secondary consumer
- parasites-_____, may or may not kill the host
- **parisitoid-** an organism that parasitizes a host, and kills it
- hyperparisitoids- an organism that parisitizes a parisitoid
- decomposer/detritus feeder- organism that eats _____

_____ (= scavenger)

■ play an absolutely essential role in a community, they recycle nutrients that

would otherwise be "locked up" in corpses, wastes, etc.

Nutrient Cycles

- nutrients must move throughout the community and be recycled, or else they are lost to life on Earth
- we'll cover the carbon, nitrogen, and phophorus cycles (assuming you remember the water cycle...)
- Carbon Cycle (Fig Fig 3-17, p 83)
- carbon fixation- carbon is absorbed (fixed)

(carbon dioxide)

- carbon passed on to other organisms through the food chain •
- carbon released back to plants through •
- carbon is lost from life when organisms die and their bodies are not decomposed entirely
- carbon is also lost when it is incorporated into shells of marine animals (calcium carbonate)
- only way to reclaim is through _____
- human activity has drastically increased the amount of carbon in the atmosphere, which has led to global warming (______)

Carbon Cycle Diagram

Nitrogen Cycle- (Fig 3-18, p 84)

- nitrogen in the atmosphere is in the form of N_2 , which is unusable by organisms, it must be in the form of NH₄ (_____) or NO₃)
- ammonium or nitrate can be converted to amino acids or nucleic acids (=fixed • nitrogen)
- Where do we get nitrate from?
 - lightning can convert N₂ to NO₂ (**nitrite**), which then can form nitrate by combining with water _____- can convert NO₂ to NO₃
 - nitrite may be formed by other nitrifying bacteria, which convert NH₃ (ammonia) into NO₂
 - the fixing of nitrogen is made possible through an enzyme called nitrogenase nitrogenase only functions in anaerobic conditions, thus, nitrogen-fixing bacteria are obligate anaerobes
 - in marine ecosystems, specialized cyanobacteria cells (______) fix nitrogen for the entire colony
 - in terrestrial ecosystems, nitrifying bacteria are mainly found in the soil, and in specialized growths on the roots of legumes, called

Nitrogen Cycle Diagram

•

Phosphorus Cycle- (fig 3-19, p 85)

- phosphorus is usually absorbed in the form of _____ (PO₄) •
 - phosphates are first found in minerals, but are constantly being eroded by
- _____ can absorb the phosphate from the • aquatic water, which are then eaten by consumers
- when consumers die, the phosphate in their bodies returns to the sea floor to • complete the cycle

- how do land organisms get phosphorus?
 - phosphorus on the sea floor may become available when _____
 - uplift the ocean, forming new land habitats
 - terrestrial plants then absorb the phosphorus
 - consumers and decomposers then can get the phosphorus, returning it to the soil so the plants can again absorb it
 - runoff of phosphorus returns it to marine ecosystems

Ecological Niches

ecological niche-______

- "an organism's way of life"
- fundamental niche- ______ ecological niche an organism has
- realized niche- the ______ niche an organism occupies
 - ex: Carolina anole once occupied many habitats, upon introduction of the Cuban anole, the Carolina anole is now restricted to the tops of the trees
 - competition has reduced the fundamental niche of the Carolina anole to the tree tops (realized niche)
- When two species with the same realized niche interact, inevitably one or the other will have to adapt, of face dying out
 - competitive exclusion- when two species have the same niche, evolutionary forces (______) will drive the two apart if they share the same habitat
 - they may acquire new adaptations or behaviors in order to change their niche

Populations

- **population-** a group of organisms of the **same** species occupying the same place at the same time
- Two things govern the size of a population:
 - biotic potential- the ______ at which a population could ______, under ideal conditions
 - many factors affect biotic potential- eg: birth rate (______), growth rate, fecundity (frequency of reproduction and # of offspring produced)
 - mortality- the _____ of a species
 - mortality can be represented by a survivorship curve
- Survivorship Curve Example

Population Growth Curve (fig 5-5, p134)

- lag phase- initially, population growth is slow, curve is not very steep
- logarithmic phase- 2nd phase, very fast growth of the population
 - usually, actual growth is limited by various factors (food shortage, predation, disease, etc)
 - limiting factors = environmental resistance

- environmental resistance typically limits the population at some maximum = carrying capacity
- **population crash-** a sudden severe drop in population

Growth Curve examples

sketch a survivorship curve below and label lag phase, logarithmic phase, carrying capacity

Density-independent Factors (Ch 5-2)

- events which reduce a population ______ of the population
- ex: blizzard, hurricane, asteroid collision, forest fire, etc Density-Dependent factors
- factors that limit population size that ______ of the population
 - ex: resource shortages, competition, predation, parasitism
 - resources are usually able to be recycled (ie: renewable resources), but population size still limited by how fast they can be recycled

Food Chains and Food Webs

- food chain- a simple list of organisms based on ______
 - usually a food chain is not a true representation of the complexity of energy flow
- **food web** a model of the flow of energy from producers to consumers, consisting of (3-9, p75)
- **food pyramid** a model showing the relative **biomass** (total mass of all organisms in a population) at each **trophic level**
 - 1st trophic level- primary producer (plant, algae, chemosynthetic organism, etc)
 - 1st trophic level usually has the greatest biomass, and largest population
 - 2nd trophic level- **primary** consumer
 - 3rd trophic level- secondary consumer
 - numbers and biomass generally go down as you go from level to level, as energy available to the next level decreases (see fig 3-12, p78)

Sketch and label a food pyramid below (label primary producer, primary consumer, secondary

consumer, tertiary consumer)

Ecosystem Production

- production of an ecosystem is dependent on the ability of the primary producers to fix ______ (see fig 3-11, p 77)
- thus, productivity is affected by many variables (solar energy, carbon dioxide, water, etc)
- gross productivity- the ______ at which organic matter is produced during photosynthesis for a particular ecosystem
- net productivity- the rate at which organic matter is ______ into the growth of the organism
- only the ______ is available for the next trophic level to use for energy
 - about ______ of the energy available within one trophic level is transferred to organisms at the next trophic level.

Diversity

- diversity-_
- diversity affected by many factors
 - # of ecological niches- the more niches, the more diversity
 - degree of isolation- the more isolated a habitat, the less diversity (due to difficulty in getting there, and increased chance of localized extinctions)
 - stress/extreme environmental conditions-
 - diversity decreases under stress, extreme environmental conditions, as only part of the community will be able to handle the stress
 - edge effect- diversity is usually highest at the ______ of an ecoystems, due to the margins having characteristics of all the ecosystems they are next to
 - dominance- diversity ______ when one species dominates a particular resource
 - biotic history- stable environments have ______ diversity, unstable environments have lower diversity

Succession (see fig 4-12, 4-3, p 106-107)

- succession-_____
- primary succession- succession that starts on a ______
 - usually _____are first to habitat new environments

- mosses, ferns, tough grasses next to make it in
- eventually trees, forest community if enough soil is present
 (= when no further change takes play
- (=________, when no further change takes place)
 secondary succession- takes place on a habitat that once underwent primary succession
 - usually a habitat that has been disturbed (forest fire, logging, etc)

Why does Succession Occur?

- organism that is currently there may make conditions favorable for next organism, who displaces the first one
- secondary organism may damage the conditions so that the first organisms cannot survive there

Climax Community

- the concept may be outdated, it is apparent that the community that is present is typically the result of past history in the environment
- •