Collisions Flipped Lesson by Ms. Logan

Conservation of Momentum

- Principle that states that the total momentum of an isolated system stays constant.
 - Total momentum before a collision equals total momentum after a collision

Conservation of Momentum Equation

$$p_{o (total)} = p_{(total)}$$

Unit:
$$\frac{kg \cdot m}{s}$$

- * Remember that velocities are vectors
- p_{o (total)} → sum of initial momenta of all objects
- p_(total) → sum of final momenta of all objects

Types of Collisions

Inelastic Collision

Elastic Collision

Types of Collisions

Type	Kinetic Energy Conserved	Momentum Conserved	Stick Together
Elastic			
Inelastic			

Inelastic Problem

$$p = 40 \text{ kg} \cdot \text{m/s}$$
 $p = 20 \text{ kg} \cdot \text{m/s}$

Inelastic Problem

A 1950 kg police car going 12.5 m/s rear-ends a 1500 kg sedan moving at 3.0 m/s. After the collision the two cars move together as one unit. What is their final velocity?

Elastic Problem

After a hold up, Caleb flees in his 1575 kg getaway car at 20 m/s. He crashes into a 45 kg highway barrel which is at rest. If Caleb's car moves at 18.9 m/s after the collision, how fast does the barrel move after being hit?