

- (A) up (B) down
- (C) left (D) right
- (E) into the page
- (F) out of the page (in your face!!!)

- (A) up (B) down
- (C) left (D) right
- (E) into the page
- (F) out of the page (in your face!!!)

- (A) up (B) down
- (C) left (D) right
- (E) into the page
- (F) out of the page (in your face!!!)

- (A) up (B) down
- (C) left (D) right
- (E) into the page
- (F) out of the page (in your face!!!)

- (A) up (B) down
- (C) left (D) right
- (E) into the page
- (F) out of the page (in your face!!!)

A conducting rod has a current flowing through it, as shown in the figure. What is the direction of the magnetic field at point *A?

- (A) Up
- (B) Down
- (C) Left
- (D) Right
- (E) Into the page
- (F) Out of the page (In your face!!!)

A solenoid has a current flowing through it. A magnetic field is generated by this current and shown in the figure. What is the direction of the current at *C?

- (A) Up
- (B) Down
- (C) Left
- (D) Right
- (E) Into the page
- (F) Out of the page (In your face!!!)

Which resistor has more current flowing through it, the larger resistor (R_{I}) or the small resistor (R_s) ?

Which resistor has a larger voltage drop, the larger resistor (R_L) or the small resistor (R_S) ?

(A) R_L

(B) R_S

(C) current is the same through both

10. Circuits Clicker Questions

Which resistor has a larger voltage drop, the larger resistor (R_L) or the small resistor (R_S)?

(A) R_L

(B) R_S

(C) voltage is the same across both

Which resistor has a larger current, the larger resistor (R_L) or the small resistor (R_S)? (A) R_L

(B) R_S

(C) current is the same through both

12. Circuits Clicker Questions

If $C_1 < C_2$, which capacitor has the largest voltage drop across it?

(A) C_1 (B) C_2

(C) both are equal

(D) unable to determine

A parallel plate capacitor is connected to a battery. It remains connected to the battery. How does the charge on the plates change if the distance between the plates is decreased?

- (A) charge increases
- **(B)** charge decreases
- (C) charge remains the same

A parallel plate capacitor is connected to a battery. It remains connected to the battery. How does the voltage across the plates change if the distance between the plates is increased?

- (A) voltage increases
- (B) voltage decreases
- (C) voltage remains the same

Answers

1/ C	2/D	3/C	4/E	5/D	6/F
7/B	8/C	9/A	10/C	11/B	12/C
13/A	14/C				